MAX6126

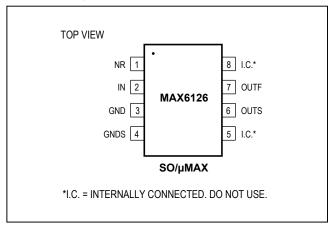
Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

General Description

The MAX6126 is an ultra-low-noise, high-precision, lowdropout voltage reference. This family of voltage references feature curvature-correction circuitry and high-stability, laser-trimmed, thin-film resistors that result in 3ppm/°C (max) temperature coefficients and an excellent ±0.02% (max) initial accuracy. The proprietary low-noise reference architecture produces a low flicker noise of 1.3µV_{P-P} and wideband noise as low as 60nV/\(\sqrt{Hz}\) (2.048V output) without the increased supply current usually found in low-noise references. Improve wideband noise to 35nV/√Hz and AC power-supply rejection by adding a 0.1µF capacitor at the noise reduction pin. The MAX6126 series mode reference operates from a wide 2.7V to 12.6V supply voltage range and load-regulation specifications are guaranteed to be less than 0.025Ω for sink and source currents up to 10mA. These devices are available over the automotive temperature range of -40°C to +125°C.

The MAX6126 typically draws $380\mu A$ of supply current and is available in 2.048V, 2.500V, 2.800V, 3.000V, 3.000V, 3.600V, 4.096V, and 5.000V output voltages. The MAX6126 also feature dropout voltages as low as 200mV. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, the MAX6126 offers supply current that is virtually independent of supply voltage and does not require an external resistor. The MAX6126 is stable with $0.1\mu F$ to $10\mu F$ of load capacitance.

The MAX6126 is available in the tiny 8-pin μ MAX[®], as well as 8-pin SO packages.


Applications

- High-Resolution A/D and D/A Converters
- ATE Equipment
- High-Accuracy Reference Standard
- Precision Current Sources
- Digital Voltmeters
- High-Accuracy Industrial and Process Control

Benefits and Features

- Ultra-Low 1.3µV_{P-P} Noise (0.1Hz to 10Hz, 2.048V Output)
- Ultra-Low 3ppm/°C (max) Temperature Coefficient
- ±0.02% (max) Initial Accuracy
- Wide (V_{OUT} + 200mV) to 12.6V Supply Voltage Range
- Low 200mV (max) Dropout Voltage
- 380µA Quiescent Supply Current
- 10mA Sink/Source-Current Capability
- Stable with C_{LOAD} = 0.1μF to 10μF
- Low 20ppm/1000hr Long-Term Stability
- 0.025Ω (max) Load Regulation
- 20µV/V (max) Line Regulation
- Force and Sense Outputs for Remote Sensing

Pin Configuration

Ordering Information continued at end of data sheet.

μΜΑΧ is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C) (ppm/°C)
MAX6126AASA21+	-40°C to +125°C	8 SO	2.048	0.02	3
MAX6126BASA21+	-40°C to +125°C	8 SO	2.048	0.06	5
MAX6126A21+	-40°C to +125°C	8 µMAX	2.048	0.06	3

+Denotes a lead(Pb)-free/RoHS-compliant package.

MAX6126

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Absolute Maximum Ratings

(All voltages referenced to GND)	Operating Temperature Range	40°C to +125°C
GNDS0.3V to +0.3V	Junction Temperature	+150°C
IN0.3V to +13V	Storage Temperature Range	65°C to +150°C
OUTF, OUTS, NR0.3V to the lesser of (V _{IN} + 0.3V) or +6V	Lead Temperature (soldering, 10s)	+300°C
Output Short Circuit to GND or IN60s	Soldering Temperature (reflow)	+260°C
Continuous Power Dissipation (T _A = +70°C)		
8-Pin µMAX (derate 4.5mW/°C above +70°C)362mW		
8-Pin SO (derate 5.88mW/°C above +70°C)471mW		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—MAX6126_21 (Vout = 2.048V)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT					•			,
Output Voltage	V _{OUT}	T _A = +25°C				2.048		V
			A grade	SO	-0.02		+0.02	%
Output Voltage Acquiracy		Referred to	B grade	s SO	-0.06		+0.06	
Output Voltage Accuracy		V _{OUT} , T _A = +25°C	A grade	μMAX	-0.06		+0.06	/0
		,	B grade	μMAX	-0.1		+0.1	
			A grade	SO		0.5	3	
		T _A = -40°C to +85°C	B grade	s SO		1	5	
		to +85°C	A grade	μMAX		1	3	
Output Voltage Temperature	TCVour		B grade	e μMAX		2	7	ppm/°C
Coefficient (Note 1)	TCV _{OUT}	T _A = -40°C to +125°C	A grade	SO		1	5	
			B grade	s SO		2	10	
			A grade	μMAX		2	5	
			B grade	e μMAX		3	12	
Line Regulation	ΔV _{OUT} /	2.7V ≤ V _{IN} ≤				2	20	μV/V
Line Regulation	ΔV _{IN}	12.6V					40	μν/ν
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤	I _{OUT} ≤ 10	mA		0.7	25	μV/mA
Load Regulation	Δl _{OUT}	Sinking: -10m	A ≤ I _{OUT}	≤ 0		1.3	25	μν/πΑ
OUT Short-Circuit Current	la a	Short to GND				160		mA
OUT SHOIL-CIRCUIT CUITERI	Isc	Short to IN		Short to IN 20			IIIA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			25		nnm	
Thermal Hysteresis (Note 2)	cycle	μМΑΧ				80		ppm
Long-Term Stability	ΔV _{OUT} /	1000br at T	- +25°C	SO		20		ppm/
Long-Term Stability	time	TOOOTH at IA-	1000hr at $T_A = +25^{\circ}C$			100		1000hr

Electrical Characteristics—MAX6126_21 (V_{OUT} = 2.048V) (continued)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}C.)$

PARAMETER	SYMBOL	CONDIT	TONS	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
		f = 0.1Hz to 10Hz			1.3		μV _{P-P}
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0			60		nV/√ Hz
		f = 1kHz, C _{NR} = 0.1μF			35		
Turn-On Settling Time	t _R	To V _{OUT} = 0.01% of final value	C _{NR} = 0		0.8		mo
Turn-On Settling Time			$C_{NR} = 0.1 \mu F$		20		ms
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	ns		0.1 to 10		μF
INPUT		,					
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		2.7		12.6	V
Quiescent Supply Current	I _{IN}	T _A = +25°C			380	550	
Quiescent Supply Current		T _A = -40°C to +125°C				725	- μA

Electrical Characteristics—MAX6126_25 (Vout = 2.500V)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ	,	1					
Output Voltage	V _{OUT}	T _A = +25°C			2.500		V
			A grade SO	-0.02		+0.02	
Output Voltage Acquirecy		1.10.0	B grade SO	-0.06		+0.06	<u></u> %
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06	70
			B grade μMAX	-0.1		+0.1	
			A grade SO		0.5	3	
		T _A = -40°C to +85°C	B grade SO		1	5	ppm/°C
			A grade µMAX		1	3	
Output Voltage Temperature	TCV		B grade μMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5	
			B grade μMAX		3	12	
Line Deculation	ΔV _{OUT} /	27//// / 126//	T _A = +25°C		3	20	///
Line Regulation	ΔVIN	$2.7V \le V_{\text{IN}} \le 12.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			40	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			1	25	11\//m \
Load Regulation	Δl _{OUT}	Sinking: -10mA ≤ I _{Ol}	_{JT} ≤ 0		1.8	25	μV/mA

Electrical Characteristics—MAX6126_25 (V_{OUT} = 2.500V) (continued)

 $(V_{IN}$ = 5V, C_{LOAD} = 0.1 μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25 $^{\circ}$ C.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS	
Drangut Voltage (Note 2)	V V	A)/	I _{OUT} = 5mA		0.06	0.2	V	
Dropout Voltage (Note 3)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.12	0.4	v	
OUT Short-Circuit Current	laa	Short to GND			160		mA	
OUT SHOIT-Circuit Current	I _{SC}	Short to IN			20		l IIIA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} /	SO			35		nnm	
Thermal Hysteresis (Note 2)	cycle	μMAX			80		ppm	
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	SO		20		ppm/	
Long-Term Stability	time	1000111 at 1A = +25 C	μMAX		100		1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			1.45		μV _{P-P}	
Noise Voltage	e _{OUT}	$f = 1kHz, C_{NR} = 0$	75			nV/√ Hz		
		f = 1kHz, C _{NR} = 0.1μF		45			110/1012	
Turn-On Settling Time	+ _	To V _{OUT} = 0.01% of	$C_{NR} = 0$		1		ms	
Turn-On Settling Time	t _R	final value	$C_{NR} = 0.1 \mu F$		20		1115	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	s		0.1 to 10		μF	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-regu	ılation test	2.7		12.6	V	
Quioscont Supply Current	I _{IN}	T _A = +25°C			380	550		
Quiescent Supply Current		T _A = -40°C to +125°C				725	μA	

Electrical Characteristics—MAX6126_28 (VOUT = 2.800V)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ							
Output Voltage	V _{OUT}	T _A = +25°C			2.800		V
Output Valtage Acquiresy		Referred to V _{OUT} ,	A grade µMAX	-0.06		+0.06	- %
Output Voltage Accuracy		T _A = +25°C	B grade μMAX	-0.10		+0.10	70
		$T_A = -40^{\circ}C$ to	A grade µMAX		1	3	
Output Voltage Temperature Coefficient (Note 1)	TOV	+85°C	B grade µMAX		2	7	ppm/°C
	TCV _{OUT}	T _A = -40°C to +125°C	A grade µMAX		2	5	
			B grade µMAX		3	12	
Line Degulation	ΔV _{OUT} /	3.0V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		3.5	23	
Line Regulation	ΔVIN	$3.00 \le V N \le 12.00$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			45	μV/V
Load Dogulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	10mA		1.3	28	\//m. A
Load Regulation	ΔVIN	Sinking: -10mA ≤ I _{OUT} ≤ 0			2.4	28	μV/mA
Drangut Voltage (Note 2)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A)/ = 0.19/	I _{OUT} = 5mA		0.06	0.2	V
Dropout Voltage (Note 3)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.12	0.4	

Electrical Characteristics—MAX6126_28 (V_{OUT} = 2.800V) (continued)

 $(V_{IN}$ = 5V, C_{LOAD} = 0.1 μ F, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25 $^{\circ}$ C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
OUT Short Circuit Current		Short to GND			160		A
OUT Short-Circuit Current	I _{SC}	Short to IN			20		mA
Thermal Hysteresis (Note 2)	ΔV _{OUT} / cycle	μΜΑΧ			80		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C	μМΑΧ		100		ppm/ 1000hr
DYNAMIC CHARACTERISTICS	•		•				
		f = 0.1Hz to 10Hz			1.45		μV _{P-P}
Noise Voltage	e _{OUT}	$f = 1kHz$, $C_{NR} = 0$			75		nV/√Hz
		$f = 1kHz, C_{NR} = 0.1\mu F$:		45		
Turn On Cattling Time		To V _{OUT} = 0.01% of	C _{NR} = 0		1		
Turn-On Settling Time	t _R		C _{NR} = 0.1μF		20		ms
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillation	ons		0.1 to 10		μF
INPUT				•			
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		3.0		12.6	V
Quiescent Supply Current	1	T _A = +25°C			380	550	
Quiescent Supply Current	I _{IN}	T _A = -40°C to +125°C				725	μA

Electrical Characteristics—MAX6126_30 (V_{OUT} = 3.000V)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage	V _{OUT}	T _A = +25°C			3.000		V
			A grade SO	-0.02		+0.02	
Output Valtage Assurage		Referred to VOLIT.	B grade SO	-0.06		+0.06	0,
Output Voltage Accuracy		Referred to V _{OUT} , T _A = +25°C	A grade µMAX	·	- %		
			B grade μMAX	-0.1		+0.1	1
		T _A = -40°C to +85°C	A grade SO		0.5	3	
			B grade SO		1	5]
			A grade µMAX		1	3	
Output Voltage Temperature	TOV		B grade μMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C
		$T_A = -40^{\circ}C$ to	B grade SO		2	10]
		+125°C	A grade µMAX		2	5	1
			B grade µMAX		3	12	

Electrical Characteristics—MAX6126_30 (V_{OUT} = 3.000V) (continued)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS	
Line Regulation	ΔV _{OUT} /	3.2V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		4	25	uV/V	
Line Regulation	ΔVIN	3.2V \(\text{V}\)\(\text{N} \(\text{S}\) 12.0V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			50	μν/ν	
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	10mA		1.5	30	\ //m ^	
Load Regulation	Δlout	Sinking: -10mA ≤ I _{OL}	_{JT} ≤ 0		2.8	30	μV/mA	
Dranguit Voltage (Note 2)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A)/ = 0.19/	I _{OUT} = 5mA		0.06	0.2	V	
Dropout Voltage (Note 3)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.11	0.4]	
OUT Short-Circuit Current		Short to GND			160		A	
Out Short-Circuit Current	Isc	Short to IN			20		mA	
Thermal I historica (Note 2)	ΔV _{OUT} /	SO		20				
Thermal Hysteresis (Note 2)	cycle	μMAX		80		ppm		
Long-Term Stability	ΔV _{OUT} / time	4000h 4 T + 05%	SO		20	ppm/		
		1000hr at T _A = +25°0	μMAX		100		1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz		1.75			μV _{P-P}	
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0			90			
		f = 1kHz, C _{NR} = 0.1µF			55		nV/√Hz	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillat	ions		0.1 to 10		μF	
Tara On On Winner Time		To V _{OUT} = 0.01% of	C _{NR} = 0		1.2			
Turn-On Settling Time	t _R	final value	C _{NR} = 0.1µF		20		ms	
INPUT	•		,	•				
Supply Voltage Range	V _{IN}	Guaranteed by line-r	egulation test	3.2		12.6	V	
Outropy Complete Company		T _A = +25°C			380	550		
Quiescent Supply Current	I _{IN}	T _A = -40°C to +125°C				725	μA	

Electrical Characteristics—MAX6126_33 (V_{OUT} = 3.300V)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
OUTPUT		,					
Output Voltage	V _{OUT}	T _A = +25°C			3.300		V
			A grade SO	-0.02		+0.02	
		Referred to V _{OUT} ,	B grade SO	-0.06		+0.06	0,
Output Voltage Accuracy		T _A = +25°C	A grade µMAX	-0.06		+0.06	- %
			B grade μMAX	-0.1		+0.1	
			A grade SO		0.5	3	
		$T_A = -40^{\circ}C$ to	B grade SO		1	5	
		+85°C	A grade µMAX		1	3	
Output Voltage Temperature	TOV		B grade μMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5	
			B grade µMAX		3	12	
Line Develope	ΔV _{OUT} /	0.5)/ 4)/ 440.0)/	T _A = +25°C		11	35	
Line Regulation	ΔV _{IN}	$3.5V \le V_{\text{IN}} \le 12.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			70	μV/V
Load Damiletian	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	10mA		2	40	\// ^
Load Regulation	Δl _{OUT}	Sinking: $-10\text{mA} \le I_{\text{OUT}} \le 0$			5	40	μV/mA
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	A)/ - 0.40/	I _{OUT} = 5mA		0.06	0.2	V
		$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.12	0.4	\ \ \
OLIT Short Girovit Gurrant	la a	Short to GND			160		A
OUT Short-Circuit Current	ISC	Short to IN			20		mA
Thormal Hystorogia (Note 2)	ΔV _{OUT} /	SO			20		nnm
Thermal Hysteresis (Note 2)	cycle	μMAX		80			ppm
Long Torm Stability	ΔV _{OUT} /	1000hr at	SO		20		ppm/
Long-Term Stability	time	T _A = +25°C	μMAX		100		1000hr
DYNAMIC CHARACTERISTICS							
		f = 0.1Hz to 10Hz			1.95		μV _{P-P}
Noise Voltage	e _{OUT}	$f = 1kHz, C_{NR} = 0$			100		nV/√ Hz
		f = 1kHz, C _{NR} = 0.1	μF		60		IIV/VIIZ
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscilla	tions		0.1 to 10		μF
Turn-On Settling Time	+-	To V _{OUT} = 0.01%	C _{NR} = 0		1.2		mo
Turn-On Setting Time	t _R	of final value $C_{NR} = 0.1 \mu F$		20			ms
INPUT				_			
Supply Voltage Range	V _{IN}	Guaranteed by line-r	regulation test	3.5		12.6	V
Quiescent Supply Current	lisa	T _A = +25°C			380	550	μA
Quicacent Supply Surrent	I _{IN}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}$	С			725	μΛ

Electrical Characteristics—MAX6126_36 (Vout = 3.600V)

 $(V_{IN} = 5V, \, C_{LOAD} = 0.1 \mu F, \, I_{OUT} = 0, \, T_A = T_{MIN} \, to \, T_{MAX}, \, unless \, otherwise \, noted. \, Typical \, values \, are \, at \, T_A = +25 ^{\circ}C.)$

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage	V _{OUT}	T _A = +25°C			3.6		V
			A grade SO	-0.02		+0.02	
Cutant Valtage Agains		Referred to V _{OUT} ,	B grade SO	-0.06		+0.06	0/
Output Voltage Accuracy		T _A = +25°C	A grade µMAX	-0.06		+0.06	- %
			B grade μMAX	-0.1		+0.1]
			A grade SO		0.5	3	
		T _A = -40°C to +85°C	B grade SO		1	5	
		1A = -40 C to +85 C	A grade µMAX		1	3	1
Output Voltage Temperature	TCV		B grade μMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5	1
			B grade μMAX		3	12	
Line Description	ΔV _{OUT} /	2.0\/ < \/ < 12.6\/	T _A = +25°C		12	40	///
Line Regulation	ΔV_{IN}	$3.8V \le V_{1N} \le 12.6V$	T _A = -40°C to +125°C			80	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	Sourcing: 0 ≤ I _{OUT} ≤ 10mA		2	50	\//m. A
Load Regulation	Δl _{OUT}	Sinking: -10mA ≤ I _{OU}	Sinking: -10mA ≤ I _{OUT} ≤ 0		6	50	μV/mA
Drangut Voltage (Note 2)	V V	A\/ = 0.19/	I _{OUT} = 5mA		0.05	0.2	V
Dropout Voltage (Note 3)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.11	0.4]
OUT Short-Circuit Current	1	Short to GND			160		mA
OUT SHOIL-CITCUIT CUITERIT	Isc	Short to IN			20] "	
Thermal Hystorogia (Note 2)	ΔV _{OUT} /	SO			20		nnm
Thermal Hysteresis (Note 2)	cycle	μMAX			80		ppm
Long Town Ctability	ΔV _{OUT} /	1000hr at T = 125°C	SO		20		ppm/
Long-Term Stability	time	1000hr at T _A = +25°C	μMAX		100		1000hr
DYNAMIC CHARACTERISTICS							
		f = 0.1Hz to 10Hz			2.1		μV _{P-P}
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0			110		nV/√Hz
		$f = 1kHz, C_{NR} = 0.1\mu$	F		66		110/1002
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillati	ions		0.1 to 10		μF
Turn On Sottling Time	4_	To V _{OUT} = 0.01% of	C _{NR} = 0		1.6		ma
Turn-On Settling Time	t _R	final value $C_{NR} = 0.1 \mu F$			20		ms
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line-re	egulation test	3.8		12.6	V
Quiacont Supply Current	l	T _A = +25°C			380	550	
Quiescent Supply Current	I _{IN}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			<u> </u>	725	μA

Electrical Characteristics—MAX6126_41 (VOUT = 4.096V)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT	'							
Output Voltage	V _{OUT}	T _A = +25°C			4.096		V	
Output Voltage Accuracy	301		A grade SO	-0.02		+0.02		
		Referred to V _{OUT} ,	B grade SO	-0.06		+0.06	%	
		T _A = +25°C	A grade µMAX	-0.06		+0.06		
			B grade μMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		T _A = -40°C to +85°C	B grade SO		1	5	1	
		+85°C	A grade µMAX		1	3		
Output Voltage Temperature	TOV		B grade μMAX		2	7		
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10		
		T _A = -40°C to +125°C	A grade µMAX		2	5		
			B grade μMAX		3	12		
Line Regulation	ΔV _{OUT} / ΔV _{IN}	4 2)/ < // < 42 6)/	T _A = +25°C		4.5	30	μV/V	
		$4.3V \le V_{\text{IN}} \le 12.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60		
Load Dogulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤	10mA		2	40	\//m. A	
Load Regulation	Δlout	Sinking: -10mA ≤ I _{OUT} ≤ 0			5	40	μV/mA	
December (Nellana (Ne	V _{IN} - V _{OUT}	-0.40/	I _{OUT} = 5mA		0.05	0.2	V	
Dropout Voltage (Note 3)		$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.1	0.4	v	
OUT Short-Circuit Current	l	Short to GND			160		mA	
OUT Short-Circuit Current	Isc	Short to IN			20		IIIA	
Thermal Hysteresis (Note 2)	ΔV _{OUT} / cycle	SO			20		nnm	
Thermal Hysteresis (Note 2)		μMAX			80		ppm	
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	SO		20		ppm/	
Long-Term Stability	time	1000111 at 1A = +25 C	μMAX		100		1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			2.4		μV _{P-P}	
Noise Voltage	e _{OUT}	f = 1kHz, C _{NR} = 0		120 80			nV/√Hz	
		f = 1kHz, C _{NR} = 0.1μF				¬ nv/√Hz		
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillations			0.1 to 10		μF	
Turn On Cottling Time	_	To V _{OUT} = 0.01% of	$C_{NR} = 0$		1.6		ma	
Turn-On Settling Time	t _R	final value	$C_{NR} = 0.1 \mu F$		20		ms	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		4.3		12.6	V	
Quiescent Supply Current		T _A = +25°C			380	550	μA	
Quiescent Supply Current		T _A = -40°C to +125°C				725	μΛ	

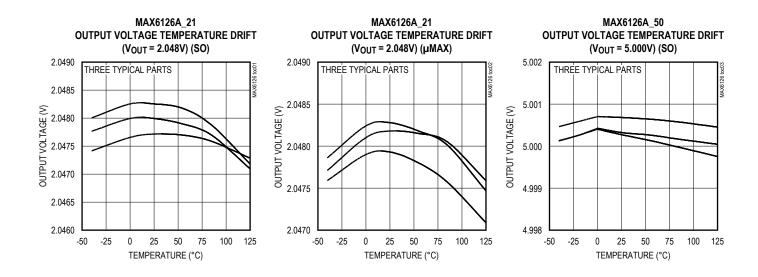
Electrical Characteristics—MAX6126_50 (V_{OUT} = 5.000V)

PARAMETER	SYMBOL	CONE	MIN	TYP	MAX	UNITS		
OUTPUT	•							
Output Voltage	V _{OUT}	T _A = +25°C			5.000		V	
			A grade SO	-0.02		+0.02	- %	
			B grade SO	-0.06		+0.06		
Output Voltage Accuracy		T _A = +25°C	A grade µMAX	-0.06		+0.06		
		F	B grade μMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		T _A = -40°C to +85°C	B grade SO		1	5		
		1A = -40 C to +65 C	A grade μMAX		1	3		
Output Voltage Temperature	TCV		B grade μMAX		2	7	nnm/°C	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	ppm/°C	
		T _A = -40°C to +125°C	B grade SO		2	10		
		+125°C	A grade μMAX		2	5		
			B grade μMAX		3	12		
Line Regulation	ΔV _{OUT} / ΔV _{IN}	5.2V ≤ V _{IN} ≤ 12.6V	T _A = +25°C		3	40	μV/V	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			80		
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			2.5	50	μV/mA	
Load Regulation	∆lout	Sinking: -10mA ≤ I _{OU}	T ≤ 0		6.5	50	μν/πΑ	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	AV/0.1= 0.1%	I _{OUT} = 5mA		0.05	0.2	V	
Diopout Voltage (Note 3)		Δνου - 0.176	I _{OUT} = 10mA		0.1	0.4		
OUT Short-Circuit Current	laa	Short to GND			160		mA	
OUT SHORT-CIRCUIT GUITERI	Isc	Short to IN			20		ША	
Thermal Hysteresis (Note 2)	ΔV _{OUT} / cycle	SO			15		ppm	
Thermal Hysteresis (Note 2)		μMAX			80			
Long-Term Stability	ΔV _{OUT} /	1000hr at T _A = +25°C	so		20		ppm/	
Long Torm Otability	time	1000111 at 1 _A = 120 C	μMAX		100		1000hr	
DYNAMIC CHARACTERISTICS					,			
	e _{OUT}	f = 0.1Hz to 10Hz			2.85		μV _{P-P}	
Noise Voltage		$f = 1kHz, C_{NR} = 0$			145		nV/√ Hz	
		f = 1kHz, C _{NR} = 0.1μF			95		110/ 11/2	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillations			0.1 to 10		μF	

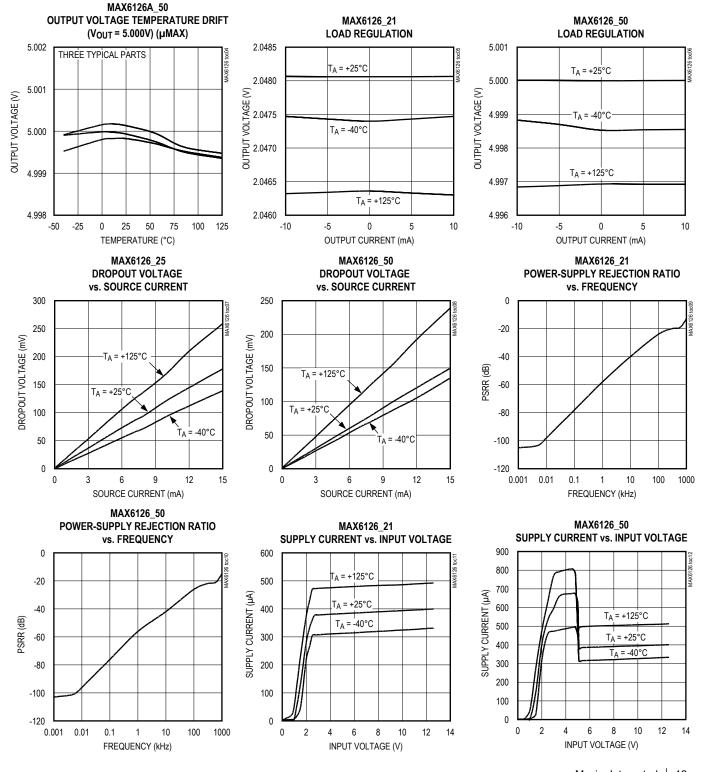
Electrical Characteristics—MAX6126_50 (V_{OUT} = 5.000V) (continued)

 $(V_{IN} = 5.5V, C_{LOAD} = 0.1\mu F, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Turn-On Settling Time	+_	To V _{OUT} = 0.01% of final value	C _{NR} = 0		2		me	
	t _R		$C_{NR} = 0.1 \mu F$		20		ms	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test		5.2		12.6	V	
Quiescent Supply Current	1	T _A = +25°C			380	550		
	IN	T _A = -40°C to +125°C				725	μA	

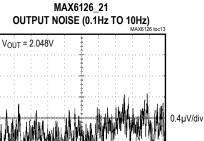

Note 1: Temperature coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} / V_{OUT} is divided by the maximum ΔT .

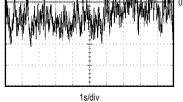
Note 2: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.

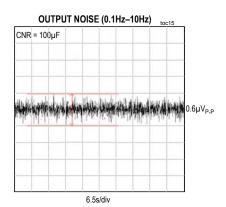

Note 3: Dropout voltage is defined as the minimum differential voltage $(V_{IN} - V_{OUT})$ at which V_{OUT} decreases by 0.1% from its original value at $V_{IN} = 5.0 \text{V}$ ($V_{IN} = 5.5 \text{V}$ for $V_{OUT} = 5.0 \text{V}$).

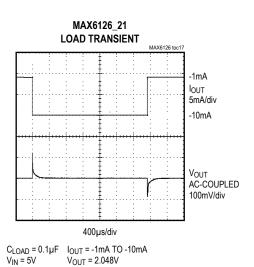
Typical Operating Characteristics

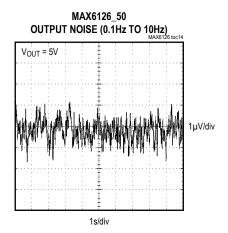
 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1 \mu\text{F}, I_{OUT} = 0, T_{A} = +25 ^{\circ}\text{C}, unless otherwise specified.})$ (Note 5)

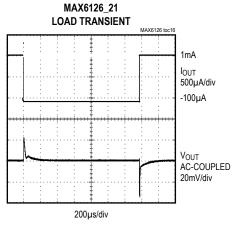


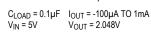

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1 \mu\text{F}, I_{OUT} = 0, T_A = +25 ^{\circ}\text{C}, unless otherwise specified.})$ (Note 5)

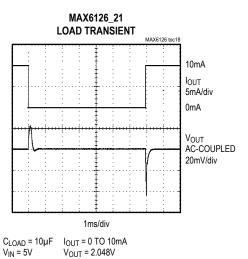


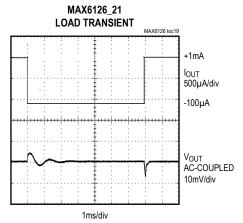

www.maximintegrated.com Maxim Integrated | 12

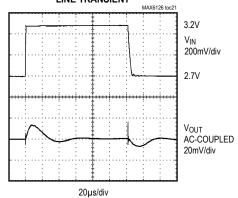

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = +25 ^{\circ}C, unless otherwise specified.) (Note 5)$



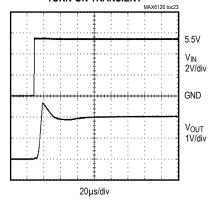




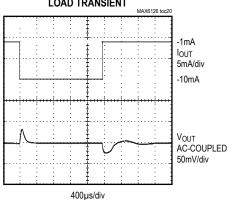




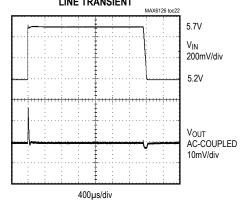
 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = +25 ^{\circ}C, unless otherwise specified.) (Note 5)$


 C_{LOAD} = 10 μ F I_{OUT} = -100 μ A TO 1mA V_{IN} = 5V V_{OUT} = 2.048V

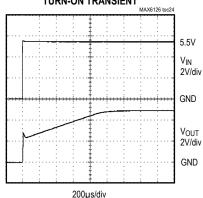
MAX6126_21 LINE TRANSIENT


 V_{OUT} = 2.048V C_{LOAD} = 0.1 μ F

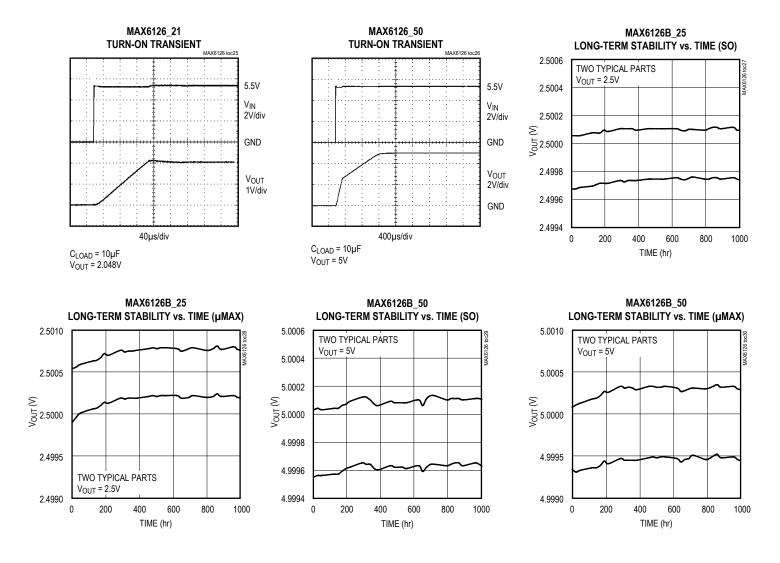
MAX6126_21 TURN-ON TRANSIENT


 C_{LOAD} = 0.1 μ F V_{OUT} = 2.048V

MAX6126_21 LOAD TRANSIENT


 C_{LOAD} = 10 μ F I_{OUT} = -1 mA TO -10 mA V_{IN} = 5 V V_{OUT} = 2.048 V

MAX6126_50 LINE TRANSIENT


 V_{IN} = 5.2V TO 5.7V C_{LOAD} = 0.1 μ F V_{OUT} = 5V

MAX6126_50 TURN-ON TRANSIENT

 $C_{LOAD} = 0.1 \mu F$ $V_{OUT} = 5 V$

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/33/36/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1 \mu\text{F}, I_{OUT} = 0, T_A = +25 ^{\circ}\text{C}, unless otherwise specified.})$ (Note 5)

Note 5: Many of the MAX6126 *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6126_21 (2.048V output) and the MAX6126_50 (5.000V output). The *Typical Operating Characteristics* of the remainder of the MAX6126 family typically lie between those two extremes and can be estimated based on their output voltages.

Pin Description

PIN	NAME	FUNCTION
1	NR	Noise Reduction. Connect a 0.1µF capacitor to improve wideband noise. Leave unconnected if not used (see Figure 1).
2	IN	Positive Power-Supply Input
3	GND	Ground
4	GNDS	Ground-Sense Connection. Connect to ground connection at load.
5, 8	I.C.	Internally Connected. Do not connect anything to these pins.
6	OUTS	Voltage Reference Sense Output
7	OUTF	Voltage Reference Force Output. Short OUTF to OUTS as close to the load as possible. Bypass OUTF with a capacitor (0.1µF to 10µF) to GND.

Detailed Description

Wideband Noise Reduction

To improve wideband noise and transient power-supply noise, add a $0.1\mu F$ capacitor to NR (Figure 1). A $0.1\mu F$ NR capacitor reduces the noise from $60nV/\sqrt{Hz}$ to $35nV/\sqrt{Hz}$ for the 2.048V output. Noise in the power-supply input can affect output noise, but can be reduced by adding an optional bypass capacitor between IN and GND, as shown in the Typical Operating Circuit. The 0.1Hz to 10Hz noise when measured with a $0.1\mu F$ noise reduction capacitor (NR pin) is $0.9\mu V_{P-P}$. Using a $100\mu F$ noise reduction capacitor (NR pin) reduces the 0.1Hz to 10Hz noise to $0.6\mu V_{P-P}$.

Output Bypassing

The MAX6126 requires an output capacitor between $0.1\mu F$ and $10\mu F$. Locate the output capacitor as close to OUTF as possible. For applications driving switching capacitive loads or rapidly changing load currents, it is advantageous to use a $10\mu F$ capacitor in parallel with a $0.1\mu F$ capacitor. Larger capacitor values reduce transients on the reference output.

Supply Current

The quiescent supply current of the series-mode MAX6126 family is typically 380 μ A and is virtually independent of the supply voltage, with only a 2μ A/V (max) variation with supply voltage.

When the supply voltage is below the minimum specified input voltage during turn-on, the device can draw up to 300µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

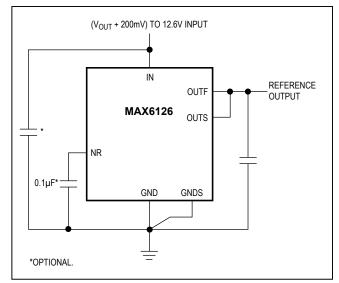


Figure 1. Noise-Reduction Capacitor

Thermal Hysteresis

Thermal hysteresis is the change of output voltage at $T_A = +25$ °C before and after the device is cycled over its entire operating temperature range. The typical thermal hysteresis value is 20ppm (SO package).

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 200 μ s to 2ms depending on the device. The turn-on time can increase up to 4ms with the device operating at the minimum dropout voltage and the maximum load. A noise reduction capacitor of 0.1 μ F increases the turn-on time to 20ms.

Output Force and Sense

The MAX6126 provides independent connections for the power-circuit output (OUTF) supplying current into a load, and for the circuit input regulating the voltage applied to that load (OUTS). This configuration allows for the cancellation of the voltage drop on the lines connecting the MAX6126 and the load. When using the Kelvin connection made possible by the independent current and voltage connections, take the power connection to the load from OUTF, and bring a line from OUTS to join the line from OUTF, at the point where the voltage accuracy is needed. The MAX6126 has the same type of Kelvin connection to cancel drops in the ground return line. Connect the load to ground and bring a connection from GNDS to exactly the same point.

Applications Information

Precision Current Source

<u>Figure 2</u> shows a typical circuit providing a precision current source. The OUTF output provides the bias current for the bipolar transistor. OUTS and GNDS sense the voltage across the resistor and adjust the current sourced by OUTF accordingly. For even higher precision, use a MOSFET to eliminate base current errors.

The voltage range of OUTF is set by the reference output voltage (OUTS) and the $V_{BE}(BJT)$ or $V_{GS}(MOS)$ of the output external device:

where:

V_{OUTF} is voltage on OUTF pin

V_{BF} is base-emitter drop across BJT

V_{REF} is the actual voltage reference output this part is supposed to provide.

It translates to supply voltage requirement for voltage reference:

 $V_{IN} \ge V_{DROP}$ (dropout voltage) + V_{BEmax} + V_{REF} where:

V_{DROP} is dropout voltage of voltage reference

High-Resolution DAC and Reference from a Single Supply

<u>Figure 3</u> shows a typical circuit providing the reference for a high-resolution, 16-bit MAX541 D/A converter.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 4 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (T_{MAX} - T_{MIN}) with the converter resolution as a parameter. The graph assumes the reference voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

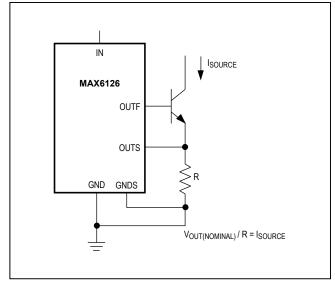


Figure 2. Precision Current Source

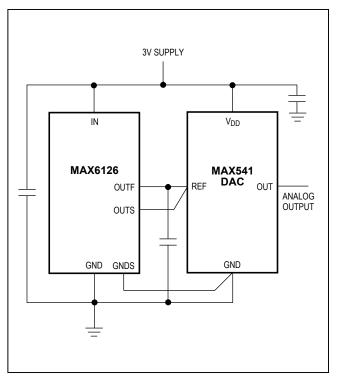


Figure 3. 14-Bit High-Resolution DAC and Positive Reference From a Single 3V Supply

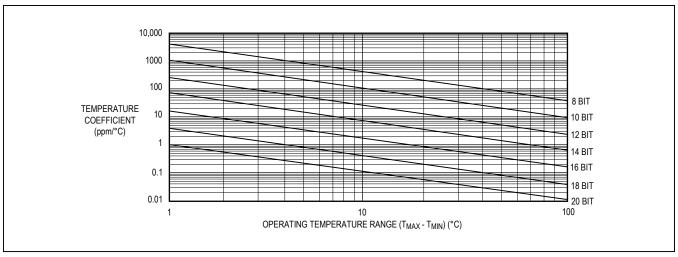
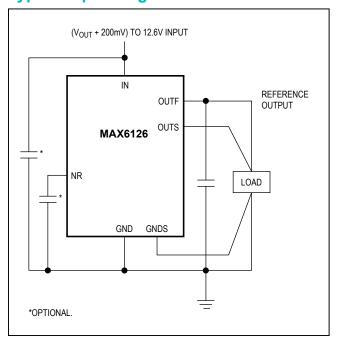



Figure 4. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Typical Operating Circuit

Chip Information

PROCESS: BiCMOS

www.maximintegrated.com Maxim Integrated | 18

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C) (ppm/°C)
MAX6126B21+	-40°C to +125°C	8 µMAX	2.048	0.1	7
MAX6126AASA25+	-40°C to +125°C	8 SO	2.500	0.02	3
MAX6126BASA25+	-40°C to +125°C	8 SO	2.500	0.06	5
MAX6126A25+	-40°C to +125°C	8 µMAX	2.500	0.06	3
MAX6126B25+	-40°C to +125°C	8 µMAX	2.500	0.1	7
MAX6126A28+	-40°C to +125°C	8 µMAX	2.800	0.06	3
MAX6126B28+	-40°C to +125°C	8 µMAX	2.800	0.1	7
MAX6126AASA30+	-40°C to +125°C	8 SO	3.000	0.02	3
MAX6126BASA30+	-40°C to +125°C	8 SO	3.000	0.06	5
MAX6126A30+	-40°C to +125°C	8 µMAX	3.000	0.06	3
MAX6126B30+	-40°C to +125°C	8 µMAX	3.000	0.1	7
MAX6126AASA33+	-40°C to +125°C	8 SO	3.300	0.02	3
MAX6126BASA33+	-40°C to +125°C	8 SO	3.300	0.06	5
MAX6126A33+	-40°C to +125°C	8 µMAX	3.300	0.06	3
MAX6126B33+	-40°C to +125°C	8 µMAX	3.300	0.1	7
MAX6126AASA36+	-40°C to +125°C	8 SO	3.600	0.02	3
MAX6126BASA36+	-40°C to +125°C	8 SO	3.600	0.06	5
MAX6126A36+	-40°C to +125°C	8 µMAX	3.600	0.06	3
MAX6126B36+	-40°C to +125°C	8 µMAX	3.600	0.1	7
MAX6126AASA41+	-40°C to +125°C	8 SO	4.096	0.02	3
MAX6126BASA41+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126BASA41/V+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126A41+	-40°C to +125°C	8 µMAX	4.096	0.06	3
MAX6126B41+	-40°C to +125°C	8 µMAX	4.096	0.1	7
MAX6126AASA50+	-40°C to +125°C	8 SO	5.000	0.02	3
MAX6126BASA50+	-40°C to +125°C	8 SO	5.000	0.06	5
MAX6126A50+	-40°C to +125°C	8 µMAX	5.000	0.06	3
MAX6126B50+	-40°C to +125°C	8 µMAX	5.000	0.1	7

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	CKAGE TYPE PACKAGE CODE		LAND PATTERN NO.	
8 μMAX	U8+1	<u>21-0036</u>	90-0092	
8 SO	S8+4	21-0041	90-0096	

N denotes an automotive qualified part.

MAX6126

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/02	Initial release	_
1	3/03	Remove "future product" and "contact factory" notes	1, 16
2	6/03	Add "A" grade devices	1, 16
3	12/03	Change µMAX part number	1, 16
4	7/04	Add top mark to Ordering Information	1, 16
5	12/10	Add 2.8V option, add lead-free options, update Package Information	1, 2, 4, 15, 16
6	8/12	Added automotive package, MAX6126BASA41/V+ to data sheet	17
7	4/16	Updated Typical Operating Characteristics section (added TOC15)	14, 15
8	6/16	Added Electrical Characteristics tables, text references, and Ordering Information references for 3.3V and 3.6V output options.	1, 6, 9–13, 17

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.