- Dual Voltage Detector With Adjustable Hysteresis 3.3-V/Adjustable and 2-V/Adjustable
- Assured Reset at V_{DD} = 0.8 V
- Supply Current: 3 µA Typical at V_{DD} = 3.3 V
- Independent Open-Drain Reset Outputs
- Temperature Range . . . –40°C to 85°C
- Six-Pin SOT-23 Package

description

The TPS3806 integrates two independent voltage detectors for battery voltage monitoring. During power-on, RESET and RSTSENSE are asserted when supply voltage V_{DD} or the voltage at LSENSE input become higher than 0.8 V. Thereafter, the supervisory circuit monitors VDD and LSENSE, keeping RESET and RSTSENSE active as long as V_{DD} and LSENSE remain below the threshold voltage V_{IT} . As soon as V_{DD} or LSENSE rise above the threshold voltage V_{IT} , RESET or RSTSENSE is deasserted, respectively. The TPS3806 device has a fixed-sense threshold voltage VIT set by an internal voltage divider at V_{DD} and an adjustable second-LSENSE input. In addition, an upper voltage threshold can be set at HSENSE to allow a wide adjustable hysteresis window.

SLVS393 - JULY 2001

typical operating circuit

The devices are available in a 6-pin SOT-23 package. The TPS3806 device is characterized for operation over a temperature range of -40° C to 85° C.

PACKAGE INFORMATION

T		THRESHOL			
'A	DEVICE	V _{DD}	SENSE	MARKING	
4000 10 0500	TPS3806J20DBVR [†]	TPS3806J20DBVT [‡]	1.8 V	1.207 V	PGQI
-40°C to 85°C	TPS3806I33DBVR [†]	TP\$3806 33DBVT	3 V	1.207 V	PGPI

[†] The DBVR passive indicates tape and reel containing 3000 parts.

[‡] The DBVT passive indicates tape and reel containing 250 parts.

ordering information

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SLVS393 - JULY 2001

Function/Truth Tables							
TPS3806							
V _{DD} > V _{IT}	V _{DD} > V _{IT} RESET LSENSE > V _{IT} RSTSENSE						
0	L	0	L				
1	Н	1	Н				

functional block diagram

detailed description

operation

The TPS3806 is used for monitoring battery voltage and asserting $\overline{\text{RESET}}$ when battery gets discharged below a certain threshold voltage. The battery voltage is monitored by a comparator via an external resistor divider. When the voltage at the LSENSE input drops below the internal reference voltage the $\overline{\text{RSTSENSE}}$ output pulls low. The output remains low until the battery is replaced, or recharged above a second higher trip-point,set at HSENSE. A second voltage can be monitored at V_{DD}. The independent $\overline{\text{RESET}}$ output pulls low when the voltage at V_{DD} drops below the fixed threshold voltage. Because the TPS3806 outputs are open-drain MOSFETs, most applications may require a pullup resistor.

programming the threshold voltage levels

The low-voltage threshold at LSENSE is calculated as follows:

$$V_{(LSENSE)} = V_{ref} \left(\frac{R1 + R2 + R3}{R2 + R3} \right)$$

where $V_{ref} = 1.207 V$

The high-voltage threshold at HSENSE is calculated as follows:

$$V_{(\text{HSENSE})} = V_{\text{ref}} \left(\frac{\text{R1} + \text{R2} + \text{R3}}{\text{R3}} \right)$$

where $V_{ref} = 1.207 V$

To minimize battery current draw it is recommended to use $1-M\Omega$ as the total resistor value $R_{(tot)} = R1 + R2 + R3$.

SLVS393 - JULY 2001

timing requirements

Terminal Functions

TERMINAL				
NAME	NO.	1/0	DESCRIPTION	
GND	2	I	Ground	
HSENSE	6	Ι	Adjustable hysteresis input	
LSENSE	5	Ι	ustable sense input	
RESET	3	0	Active-low open drain reset output (from V _{DD})	
RSTSENSE	1	0	Active-low open-drain reset output (from LSENSE)	
V _{DD}	4	I	Input supply voltage and fixed sense input	

SLVS393 - JULY 2001

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note1)	
All other pins (see Note 1)	–0.3 V to 7 V
Maximum low-output current, I _{OL}	5 mA
Maximum high-output current, I _{OH}	–5 mA
Input clamp current, I _{IK} (VI<0 or VI>VDD)	±10 mA
Output clamp current, I _{OK} (V _O <0 or V _O >V _{DD})	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{sto}	–65°C to 150°C
Soldering temperature	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be continuously operated at 7 V for more than t=1000 h.

DISSIPATION RATING TABLE							
PACKAGE	T _A <25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING			
DBV	437 mW	3.5 mW/°C	280 mW	227 mW			

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.3	6	V
Input voltage, VI	0	V _{DD} +0.3	V
Operating free-air temperature range, T _A	-40	85	°C

SLVS393 - JULY 2001

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Low-level output voltage		$V_{DD} = 1.5 V$, $I_{OL} = 1 mA$				
VOL			V _{DD} = 3.3 V, I _{OL} = 2 mA			0.3	V
			$V_{DD} = 6 V$, $I_{OL} = 3 mA$				
	Power-up reset voltage (see Note 2)		$V_{DD} \ge 0.8 \text{ V}, \qquad I_{OL} = 50 \mu\text{A}$			0.2	V
		LSENSE		1.198	1.207	1.216	
		TPS3806J20	T _A =25°C	1.787	1.8	1.813	V
	Negative-going input threshold voltage (see Note 3)	TPS3806I33		2.978	3	3.022	
۷IT		LSENSE		1.183	1.207	1.231	V
		TPS3806J20	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.764	1.8	1.836	
		TPS3806I33	1	2.94	3	3.06	
			1.2 V < V _{IT} < 2.5 V	60			.,
Vhys	Hysteresis		$2.5 \text{ V} < \text{V}_{IT} < 3.5 \text{ V}$		90		mv
Ц	Input current	LSENSE, HSENSE		-25		25	nA
IOH	IOH High-level output current		$V_{DD} = V_{IT} + 0.2 V, V_{OH} = V_{DD}$			300	nA
			V _{DD} = 3.3 V, Output unconnected		3	5	
DD	Supply current	upply current			4	6	μΑ
Ci Input capacitance		$V_{I} = 0 V \text{ to } V_{DD}$		1		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTES: 2. The lowest supply voltage at which $\overrightarrow{\text{RESET}}$ becomes active. $t_{r,VDD} \ge 15 \,\mu\text{s/V}$ 3. To ensure best stability of the threshold voltage, place a bypass capacitor (ceramic, 0.1 μ F) near the supply terminals.

timing requirements at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Dulas width	At V _{DD}					
t _w Pulse width		At SENSE	$V_{\text{IH}} = 1.05 \text{ x } V_{\text{IT}}, V_{\text{IL}} = 0.95 \text{ x } V_{\text{IT}}$	5.5			μs

switching characteristics at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C

	PARAME	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
^t PHL	Propagation (delay) time,	V _{DD} to RESET delay			5	400	μs
	high-to-low-level output	LSENSE to RSTSENSE delay	VIH = 1.05 x VIT, VIL = 0.95 x VIT			100	
^t PLH	Propagation (delay) time, low-to-high-level output	V _{DD} to RESET delay			-	400	μs
		HSENSE to RSTSENSE delay			5	100	

SLVS393 - JULY 2001

SLVS393 - JULY 2001

TYPICAL CHARACTERISTICS

SLVS393 - JULY 2001

MECHANICAL DATA

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Leads 1, 2, 3 are wider than leads 4, 5, 6 for package orientation.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated