
							R	EVISI	ONS										
LTR				D	ESCRI	PTIO	N					DA	TE (YI	R-MO-	DA)		APPF	ROVE	5
A	Drawir	ng updated	d to refl	ect cu	rrent re	equire	ements	s. – gt					04-0	4-29		R. Monnin			
В	Added Updat	I footnote	1 to tab g parag	ole II, u jraphs.	ınder g sld	roup	C end	-point	electri	cals.			11-0)5-20		Charles F. Saffle		9	
REV																		1	1
SHEET																			
REV																			
SHEET																			
REV STATUS	6		REV			В	В	В	В	В	В	В	В	В	В	В	В	В	
OF SHEETS PMIC N/A				PARED		1	2	3	4	5	6	7	8	9	10	11	12	13	
MICRO	NDARD OCIRCU WING		-	Zahn CKED E ael C.	3Y Jones							DLUM	BUS	, OHIO	O 432	ARITIME 3218-3990 <mark>dla.mil</mark>			
FOR US	ILABLE SE BY A RTMENT	LL 'S	Ray	ROVE	in				VO		CIRC GE R								
DEPARTMEN			DRAV		\PPRO` -08-09		ATE				•								
AMS	SC N/A		REVI	SION L	EVEL B				SIZ A	ZE A		GE CO 67268			ł	5962·	-9961	2	
									SHE	FT			OF						

1. SCOPE

1.1 <u>Scope</u>. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN shall be as shown in the following example:

1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>1</u> /	Circuit function
01	SDP117		Positive adjustable voltage regulator
02	SDP117HV		Positive adjustable voltage regulator, high voltage
03	SDP137		Negative adjustable voltage regulator
04	SDP137HV		Negative adjustable voltage regulator, high voltage

1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

Device class		Device performa	ance documentation			
К	Highest reliability cl applications.	ass available. Thi	is level is intended for use i	n space		
Н	Standard military qu where non-space h		This level is intended for us ses are required.	e in applications		
G	Class H screening a range, manufacture	and In-Process Ins or specified incomi	ard military quality class. The spections with a possible lin ng flow, and the manufactu ce inspections (Group A, B	nited temperature rer guarantees (but		
E	with exception(s) ta be specified in the o	ken to the require device acquisition I to ensure that the	upon one of the other class ments of that class. These document; therefore the ac e exception(s) taken will not	exception(s) must quisition document		
D	Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.					
The SDP117, SDP117HV, SDP137, an listed on Standard Microcircuit Drawing		nilar to the LM117	, LM117HV, LM137, and LI	M137HV		
STANDARD MICROCIRCUIT DRAW	-	SIZE A		5962-99612		
DLA LAND AND MARITIM COLUMBUS, OHIO 43218-3			REVISION LEVEL B	SHEET 2		

1/

1.2.4 Case outline(s).	The case outline(s) are as desi	gnated in MIL-STD	-1835 and as follows:	
Outline letter	Descriptive designator	Terminals	Package style	
Ν	See figure 1	3	Z-tab with nonisolated	,
Т	See figure 1	3	(TO-257Z), with glass Flange mount with noniso (TO-257), with glass	lated tab,
U	See figure 1	3	(TO-257), with glass Flange mount with isola	ted tab,
Z	See figure 1	3	(TO-257), with glass Z-tab with isolated t (TO-257Z), with glass	ab,
1.2.5 Lead finish. The	lead finish shall be as specified	d in MIL-PRF-3853	4.	
1.3 Absolute maximum	<u>n ratings</u> . <u>1</u> /			
Input-output voltage di				
	1 03			
	perature range		50°C	
	dering, 10 seconds)		50°C	
• •				
Thermal resistance, ju		20 VV		
		3 5°C/\\/		
	nt (I _{MAX})			
1.4 <u>Recommended op</u>				
51				
		1.2 to -47 V	dC	
Input voltage range:		4.25 \/ do to	41.25 \/ do	
	mperature range (T _A)			
2. APPLICABLE DOCI	JMENTS			
2.1 <u>Government specif</u> of this drawing to the external solicitation or contract.	ication, standards, and handbo ent specified herein. Unless oth	<u>oks</u> . The following erwise specified, th	specification, standards, and han the issues of these documents are	dbooks form a part those cited in the
1/ Stresses above the a	bsolute maximum rating may co	use permanent da	mage to the device. Extended op	eration at
	nay degrade performance and a		maye to the device. Extended Op	
		SIZE A		5962-99612
			REVISION LEVEL	QUEET
	ID AND MARITIME IS, OHIO 43218-3990		B B	SHEET 3

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard for Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime -VA) upon request.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	4

3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime -VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

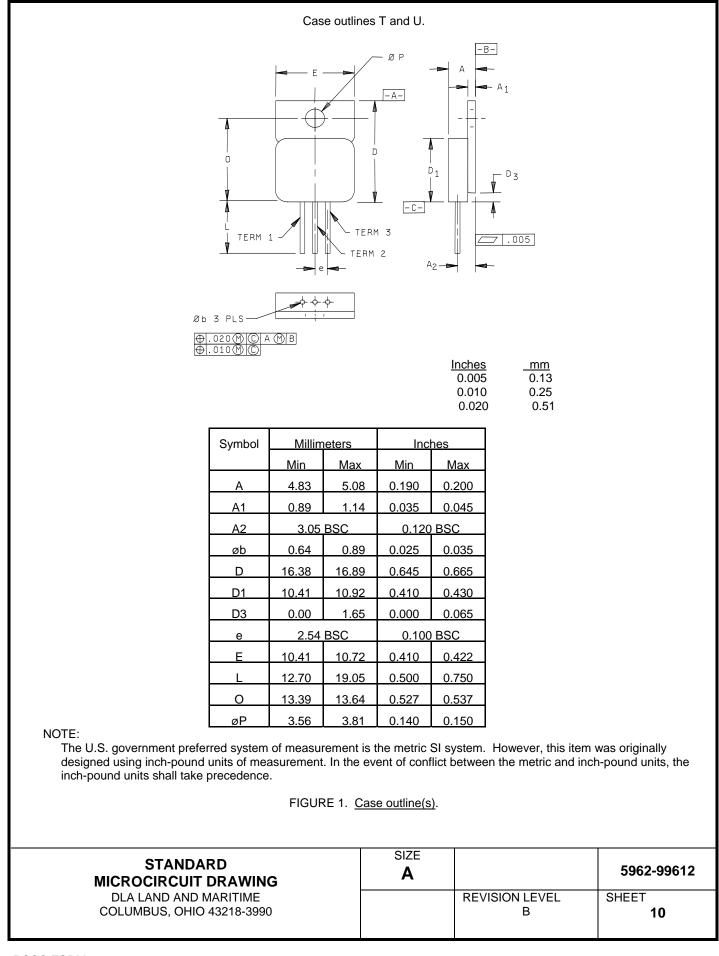
4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

- 4.3.1 <u>Group A inspection (CI)</u>. Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.
- 4.3.2 <u>Group B inspection (PI)</u>. Group B inspection shall be in accordance with MIL-PRF-38534.
- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.3.4 <u>Group D inspection (PI)</u>. Group D inspection shall be in accordance with MIL-PRF-38534.

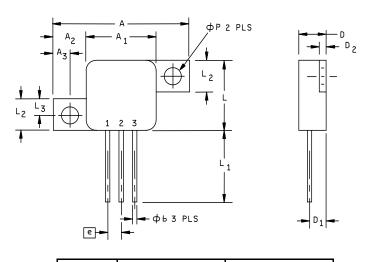
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	5

3.0 V 3.3 V 40 V 60 V V _{REF} ,	subgroups 1 2,3 1,2,3 1,2,3	type 01,02	Min 1.20 1.20	Max 1.30 1.30	V
3.3 V 40 V 60 V V _{REF} ,	2,3 1,2,3	01,02	1.20		V
3.3 V 40 V 60 V V _{REF} ,	2,3 1,2,3	01,02	1.20		V
40 V 60 V V _{REF} ,	1,2,3			1.30	
60 V V _{REF} ,					-
V _{REF} ,	1,2,3		1.20	1.30	-
		02	1.20	1.30	
	1	01,02		±9	mV
$\leq V_{DIFF} \leq 40 V$					-
V _{REF} ,	2,3			±23	
$\leq V_{DIFF} \leq 40 \text{ V}$	1	02			-
_		02			-
		04.00			
	1	01,02		±15	mV
	<u></u>			145	-
	2,3			±15	
	1			115	
	I			±15	
	23			+15	-
	2,5			±13	
	123	02		+15	-
	1,2,0	02		±10	
	1	01.02		+16	mV
	·	01,01		±10	
25°C					
Hz, $C_{ADJ} = 10 \ \mu F$,	4,5,6	01	66		dB
V _{REF}					
Hz, $C_{ADJ} = 10 \ \mu F$,		02	66		
V_{REF} , I_{OUT} = 100 mA					
3.0 V	1	01,02		100	μΑ
	2,3			100	
	1,2,3			100	
60 V	1,2,3	02		100	
	$\label{eq:response} \begin{array}{l} V_{\text{REF}}, \\ V_{\text{DIFF}} \leq 60 \ V \\ \hline 3 \ V, \\ \leq l_{L} \leq 1.5 \ A \\ \hline 3.3 \ V, \\ \leq l_{L} \leq 1.5 \ A \\ \hline 40 \ V, \\ \leq l_{L} \leq 300 \ mA \\ \hline 40 \ V, \\ \leq l_{L} \leq 300 \ mA \\ \hline 60 \ V, \\ \leq l_{L} \leq 30 \ mA \\ \hline 60 \ V, \\ \leq l_{L} \leq 30 \ mA \\ \hline 60 \ V, \\ \leq l_{L} \leq 30 \ mA \\ \hline 60 \ V, \\ \leq l_{L} \leq 1.5 \ A, \\ \hline 0 \ watts, t = 20 \ ms, \\ \hline 25^{\circ}\text{C} \\ \hline Hz, \ C_{\text{ADJ}} = 10 \ \mu\text{F}, \\ \hline V_{\text{REF}} \\ \hline Hz, \ C_{\text{ADJ}} = 10 \ \mu\text{F}, \\ \hline V_{\text{REF}}, \ l_{\text{OUT}} = 100 \ \text{mA} \\ \end{array}$	$\begin{array}{ c c c c c } V_{\text{REF}}, & 1 \\ V_{\text{DIFF}} \leq 60 \ V & 2,3 \\ \hline 3 \ V, & 1 \\ \leq l_{L} \leq 1.5 \ A & 2,3 \\ \leq l_{L} \leq 1.5 \ A & 1 \\ \hline 40 \ V, & 2,3 \\ \leq l_{L} \leq 300 \ \text{mA} & 1 \\ \hline 40 \ V, & 2,3 \\ \leq l_{L} \leq 300 \ \text{mA} & 1 \\ \hline 60 \ V, & 1,2,3 \\ \leq l_{L} \leq 30 \ \text{mA} & 1 \\ \hline 60 \ V, & 1,2,3 \\ \leq l_{L} \leq 30 \ \text{mA} & 1 \\ \hline 60 \ V, & 1,2,3 \\ \leq l_{L} \leq 30 \ \text{mA} & 1 \\ \hline 60 \ V, & 1,2,3 \\ \hline 60 \ V, & 1,2,3 \\ \hline 11 \ C_{\text{ADJ}} = 10 \ \mu\text{F}, \\ \hline V_{\text{REF}} \ 100 \ \text{mA} & 1 \\ \hline 12, C_{\text{ADJ}} = 10 \ \mu\text{F}, \\ \hline V_{\text{REF}} \ 100 \ \text{mA} & 1 \\ \hline 3.3 \ V & 1 \\ \hline 3.3 \ V & 2,3 \\ \hline 40 \ V & 1,2,3 \\ \hline \end{array}$	$\begin{array}{ c c c c c } V_{\text{REF}}, & 1 & 02 \\ \hline V_{\text{DIFF}} \leq 60 \ V & 2,3 & & & \\ \hline 3 \ V, & 1 & & & \\ \hline 3 \ V, & 2,3 & & \\ \hline 3.3 \ V, & 2,3 & & \\ \hline 40 \ V, & 1 & & \\ \hline 40 \ V, & 1 & & \\ \hline 40 \ V, & 2,3 & & \\ \hline 40 \ V, & 2,3 & & \\ \hline 40 \ V, & 2,3 & & \\ \hline 60 \ V, & 1,2,3 & 02 & & \\ \hline 60 \ V, & 1,2,3 & 02 & & \\ \hline 60 \ V, & 1,2,3 & 02 & & \\ \hline 60 \ V, & 1,2,3 & 02 & & \\ \hline 12 \ S^{\circ} C & & & \\ \hline 12 \ V_{\text{REF}} & 10 \ \mu\text{F}, & \\ \hline 12 \ V_{\text{REF}} \ 100 \ \text{mA} & & \\ \hline 12 \ 3.3 \ V & 1 & \\ \hline 3.0 \ V & 1 & \\ \hline 3.3 \ V & 1,2,3 & \\ \hline 40 \ V & 1,2,3 & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		TABLE	I. Electrical performance c	haracteristics - Co	ontinued.			
ce types 01 and 02 - Continued. stment pin current ge $V_{DIFF} = 3 V$, $10 mA \le l_{L} \le 1.5 A$ 1 $01,02$ ± 5 $V_{DIFF} = 3 V$, $10 mA \le l_{L} \le 1.5 A$ 1 $01,02$ ± 5 ± 5 $V_{DIFF} = 40 V$, $10 mA \le l_{L} \le 195 mA$ 1 ± 5 ± 5 $V_{DIFF} = 40 V$, $10 mA \le l_{L} \le 195 mA$ ± 5 ± 5 $3 V \le V_{DIFF} \le 40 V$ $2,3$ $3 V \le V_{DIFF} \le 40 V$ $2,3$ $3.3 V \le V_{DIFF} \le 40 V$ $2,3$ $3.3 V \le V_{DIFF} \le 40 V$ $2,3$ $3.3 V \le V_{DIFF} = 3.0 V$, 1 $01,02$ ± 5 $V_{OUT} = 1.4 V$ (forced) $V_{OUT} = 1.4 V$ (forced) $V_{OUT} = 1.4 V$ (forced) 1 $01,02$ 5 5 $V_{OUT} = 1.4 V$ (forced) $V_{OUT} = 1.4 V$ (forced) 1 0.18 1.5 0.18 1.5 0.18 1.5 $V_{DIFF} = 40 V$ 1 0.2 0.18 1.5 0.15 0.65 0.02 0.28 0.28 <td>Test</td> <td>Symbol</td> <td>$\textbf{-55^{\circ}C} \leq T_A \leq \textbf{+125^{\circ}C}$</td> <td></td> <td></td> <td colspan="2">Limits</td> <td>Unit</td>	Test	Symbol	$\textbf{-55^{\circ}C} \leq T_A \leq \textbf{+125^{\circ}C}$			Limits		Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D		unless otherwise specifi	ed		Min	Max	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					04.00	i	1	1.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	change	ΔI_{ADJ}		1	01,02		±5	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2,3			±5	
$\frac{10 \text{ mA} \le l_{L} \le 300 \text{ mA}}{V_{DIFF} = 40 \text{ V}, \\ 10 \text{ mA} \le l_{L} \le 195 \text{ mA}} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 40 \text{ V} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 40 \text{ V} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 40 \text{ V} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 40 \text{ V} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 40 \text{ V} \\ \hline \begin{array}{c} 3 \text{ V} \le V_{DIFF} \le 60 \text{ V} \\ \hline \begin{array}{c} 12 \text{ M} \end{array} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \le l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge l_{L} \le 195 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge 10 \text{ mA} \\ \hline \begin{array}{c} 10 \text{ mA} \ge 10 \text{ mA}$			$V_{\text{DIFF}} = 40 \text{ V},$	1	_		+5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				23	_			_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				2,0			±5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
num load current $V_{DIFF} = 3.0 \text{ V},$ 1 01,02 5 mA $V_{OUT} = 1.4 \text{ V (forced)}$ $V_{OUT} = 1.4 \text{ V (forced)}$ 1,2,3 5 5 5 $V_{OUT} = 1.4 \text{ V (forced)}$ $V_{OUT} = 1.4 \text{ V (forced)}$ 1,2,3 02 5 5 $V_{OUT} = 1.4 \text{ V (forced)}$ $V_{OUT} = 1.4 \text{ V (forced)}$ 1,2,3 02 7 7 ent limit $3/$ $V_{DIFF} = 60 \text{ V},$ $1,2,3$ 01 1.50 3.50 3.50 7 ent limit $3/$ $V_{DIFF} = 40 \text{ V}$ 1 0.18 1.5 1.5 1.2,3 02 0.5 1.65 0.15 0.65 1.65 0.15 0.65 1.65 0.15 0.65 0.02 0.28 0.2								_
$\frac{\left \begin{array}{c} V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ V_{\text{DIFF}} = 3.3 \text{ V,} \\ V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{DIFF}} = 40 \text{ V,} \\ V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{DIFF}} = 60 \text{ V,} \\ V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{DIFF}} = 60 \text{ V,} \\ V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{DIFF}} = 60 \text{ V,} \\ V_{\text{OUT}} = 1.4 \text{ V (forced)} \\ \hline V_{\text{DIFF}} = 50 \text{ V,} \\ \hline V_{\text{DIFF}} = 15 \text{ V} \\ \hline V_{\text{DIFF}} = 5 \text{ V} \\ \hline V_{\text{DIFF}} = 5 \text{ V} \\ \hline V_{\text{DIFF}} = 5 \text{ V} \\ \hline V_{\text{DIFF}} = 40 \text{ V} \\ \hline V_{\text{DIFF}} = 60 \text{ V} \\ \hline 1 \\ \hline \end{array} \right) \begin{array}{c} 0.18 & 1.5 \\ 0.15 & 0.65 \\ \hline 0.02 & 0.28 \end{array} \right) \\ \hline \textbf{ce type 03.} \\ \hline \textbf{rence voltage} \\ \hline V_{\text{REF}} \\ \hline V_{\text{DIFF}} = 3.0 \text{ V} \\ \hline 1 \\ \hline 0 3 \\ \hline 1 \\ \hline 0 3 \\ \hline 1.275 \\ \hline 1.225 \\ \hline \textbf{V} \hline \textbf{V} \\ \hline \textbf{V} \\ \hline \textbf{V} \hline \textbf{V} \\ \hline \textbf{V} \\ \hline \textbf{V} \\ \hline \textbf{V} \hline \textbf{V} \\ \hline \textbf{V} \hline $							±5	
$\frac{ V_{OUT} = 1.4 \text{ V (forced)}}{ V_{DIFF} = 40 \text{ V}, \\ V_{OUT} = 1.4 \text{ V (forced)}} \\ \hline V_{DIFF} = 40 \text{ V}, \\ V_{OUT} = 1.4 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V}, \\ V_{OUT} = 1.4 \text{ V (forced)} \\ \hline V_{OUT} = 5 \text{ V (forced)} \\ \hline V_{DIFF} = 5 \text{ V (forced)} \\ \hline V_{DIFF} = 40 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V (forced)} \\ \hline V_{OUT} = 1.4 \text{ V (forced)} \\ \hline V_{OUT} = 1.4 \text{ V (forced)} \\ \hline V_{OUT} = 1.4 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V (forced)} \\ \hline V_{DIFF} = 60 \text{ V (forced)} \\ \hline V_{DIFF} = 1.4 \text{ V (forced)} \\ \hline V_{DIFF} = $	Minimum load current	I _{LMIN}		1	01,02		5	mA
$\frac{V_{\text{DIFF}} = 40 \text{ V}, \qquad 1,2,3}{V_{\text{OUT}} = 1.4 \text{ V (forced)}} \qquad 1,2,3 \qquad 5 \qquad 5 \qquad 5 \qquad V_{\text{OUT}} = 1.4 \text{ V (forced)} \qquad 1,2,3 \qquad 02 \qquad 7 \qquad 7 \qquad 02 \qquad 7 \qquad 7 \qquad 001 = 1.4 \text{ V (forced)} \qquad 1,2,3 \qquad 01 \qquad 1.50 \qquad 3.50 \qquad 4 \qquad 0.18 \qquad 1.5 \qquad 0.18 \qquad 1.5 \qquad 0.18 \qquad 1.5 \qquad 0.18 \qquad 1.5 \qquad 0.15 $				2,3	1		5	
$\frac{V_{OUT} = 1.4 \text{ V (forced)}}{V_{DIFF} = 60 \text{ V},} \\ V_{OUT} = 1.4 \text{ V (forced)}} \\ 1,2,3 \\ V_{OUT} = 1.4 \text{ V (forced)}} \\ 1,2,3 \\ 02 \\ 7 \\ 1,2,3 \\ 01 \\ 1.50 \\ 3.50 \\ 0.18 \\ 1.5 \\ 0.18 \\ 1.5 \\ 0.15 \\ 0.65 \\ 0.02 \\ 0.28 \\ 1.5 \\ 0.02 \\ 0.28 \\ 0.02 \\ 0.28 \\ 0.02 \\ 0.28 \\ 0.02 \\ 0.28 \\ 0.02 \\ 0.28 \\ 0.$			$V_{DIFF} = 40 V,$	1,2,3	_		5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				123	02			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1,2,0	02		7	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Current limit <u>3</u> /	I _{CL}		1,2,3	01	1.50		А
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								_
VDIFF = 60 V 1 0.02 0.28 ce type 03. VDIFF = 3.0 V 1 03 -1.275 -1.225 V					02			_
Ce type 03. rence voltage V _{REF} V _{DIFF} = 3.0 V 1 03 -1.275 -1.225 V								_
rence voltage V_{REF} $V_{DIFF} = 3.0$ V 1 03 -1.275 -1.225 V	Dovice type 03		$V_{DIFF} = 60 V$	1		0.02	0.28	
	Reference voltage	V _{REF}	V _{DIFF} = 3.0 V	1	03	-1.275	-1.225	V
2,3 -1.30 -1.20				2,3	_	-1.30	-1.20	
V _{DIFF} = 40 V 1 -1.275 -1.225			V _{DIFF} = 40 V	1	_	-1.275	-1.225	
				2,3	_	-1.30	-1.20	
2,3 -1.30 -1.20	Line regulation	R _{LINE}	$3.0~V \leq V_{\text{DIFF}} \leq 40~V$	1	03		±9	mV
$\label{eq:regulation} R_{\text{LINE}} 3.0 \ \text{V} \le \text{V}_{\text{DIFF}} \le 40 \ \text{V} \qquad 1 \qquad 03 \qquad \pm 9 \qquad \text{mV}$				2,3			±23	
			V _{DIFF} = 60 V V _{DIFF} = 3.0 V V _{DIFF} = 40 V	1 1 2,3 1 2,3 1 2,3 1	_	0.02 -1.275 -1.30 -1.275	0.28 -1.225 -1.20 -1.225 -1.20 ±9	
		-				-1.30		
	Line regulation	R _{LINE}	$3.0 \text{ V} \leq \text{V}_{\text{DIFF}} \leq 40 \text{ V}$		03			mV
				2,3			±23	
regulationR LINE $3.0 V \le V_{DIFF} \le 40 V$ 103 ± 9 mV	See footnotes at end of tab	le.						
regulationR LINE $3.0 V \le V_{DIFF} \le 40 V$ 103 ± 9 mV2,3 ± 23			WING	SIZE A			596	2-99612
regulation R _{LINE} $3.0 V \le V_{DIFF} \le 40 V$ 1 0.3 ± 9 mV 2,3 ± 23 ± 23 ± 23 ± 23 ± 23	DLA LAND	AND MARITI	ME	RE	VISION LE B	VEL	SHEET	


	TABLE	. Electrical performance	characteristics	- Continued.				
Test	Symbol	$\begin{array}{l} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ} \\ I_{L} = 8 \ mA \end{array}$	C Group subgro		Limits		Unit	
Dovice type 02 Continue		unless otherwise spec	ified		Min	Max		
Device type 03 - Continue Load regulation <u>2</u> /	R _{LOAD}	V _{DIFF} = 5 V,	1,2,	3 03	<u> </u>	±25	mV	
	I LOAD	$8 \text{ mA} \le I_{L} \le 1.5 \text{ A}$	· ,_,	0 00		120		
		$V_{\text{DIFF}} = 12 \text{ V},$	1			±25	-	
		$8 \text{ mA} \le I_L \le 1.5 \text{ A}$						
		$V_{\text{DIFF}} = 40V,$	1			±25	-	
		$8~mA \leq I_L \leq 200~mA$						
		$V_{DIFF} = 40 V,$	2,3	\$		±25		
		$8~mA \leq I_L \leq 100~mA$						
Thermal regulation	V _{RTH}	V _{IN} = -14.6 V,	1	03		±5	mV	
		$I_{L} = 1.5 A,$						
		$P_D = 20$ watts, t = 10 m $T_A = +25^{\circ}C$	IS,					
Ripple rejection 3/	R _N	$f = 120 \text{ Hz}, C_{ADJ} = 10 \mu$	F, 4,5,	6 03	66		dB	
, _		$V_{OUT} = V_{REF}$, , , , , , , , , , , , , , , , , , , ,					
Adjustment pin current	I _{ADJ}	V _{DIFF} = 3.0 V	1,2,	3 03		100	μA	
		V _{DIFF} = 40 V	1,2,	3		100		
Adjustment pin current change	∆l _{ADJ} (line)	$3.0~V \leq V_{\text{DIFF}} \leq 40~V$	1,2,	3 03		±5	μΑ	
	ΔI_{ADJ}	V _{DIFF} = 5.0 V,	1,2,	3		±5		
	(load)	$8~mA \leq I_L \leq 1.5~A$						
Minimum load current	I _{LMIN}	$V_{\text{DIFF}} = 3.0 \text{ V},$	1,2,	2,3 03	3	mA		
		$V_{OUT} = -1.4 V$ (forced)					-	
		$V_{\text{DIFF}} = 10 \text{ V},$	1,2,	3		3		
		$V_{OUT} = -1.4 \text{ V (forced)}$	1.0	2		F	-	
		$V_{DIFF} = 40 V,$ $V_{OUT} = -1.4 V (forced)$	1,2,	3		5		
Current limit 3/	I _{CL}	$V_{\text{DIFF}} = 5 \text{ V}$	1,2,	3 03	1.5	3.5	A	
	ICL	$V_{\text{DIFF}} = 40 \text{ V}$	1		0.24	1.2		
Device type 04.					-			
Reference voltage	V _{REF}	V _{DIFF} = 3.0 V	1	04	-1.275	-1.225	V	
			2,3	}	-1.300	-1.200	1	
		$V_{DIFF} = 50 V$	1		-1.275	-1.225		
			2,3	3	-1.300	-1.200		
Line regulation	R _{LINE}	$3.0~V \leq V_{\text{DIFF}} \leq 50~V$	1	04		±10	mV	
			2,3	5		±25		
See footnotes at end of tab			SIZE					
MICROCIR		VING	Α			596	2-99612	
DLA LAND	AND MARITI , OHIO 43218	ME		REVISION LE B	VEL	SHEET	8	

Test	Symbol	Conditions -55°C \leq T _A \leq +125°C I _L = 8 mA	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Device type 04 - Continue		t	t	· · · · ·		i	1
Load regulation 2/	R _{LOAD}	$V_{DIFF} = 50 V,$	1	04		±25	mV
		$8 \text{ mA} \le I_L \le 110 \text{ mA}$					_
		$V_{DIFF} = 5.0 V,$	1			±25	
		$8 \text{ mA} \leq I_L \leq 1.5 \text{ A}$	2,3			±45	
Thermal regulation	V_{RTH}	V _{IN} = -14.6 V,	1	04		±5	mV
		I _L = 1.5 A,					
		$P_D = 20$ watts, t = 10 ms, $T_A = +25^{\circ}C$					
Ripple rejection 3/	R _N	$f = 120 \text{ Hz}, C_{\text{ADJ}} = 10 \mu\text{F},$	4,5,6	04	66		dB
		$V_{OUT} = V_{REF}$					
Adjustment pin current	I _{ADJ-1}	V _{DIFF} = 3.0 V	1,2,3	04		100	μΑ
	I _{ADJ-2}	$V_{DIFF} = 40 V$	1,2,3			100	
	I _{ADJ-3}	V _{DIFF} = 50 V	1,2,3			100	
Adjustment pin current	ΔI_{ADJ}	V _{DIFF} = 5.0 V,	1,2,3	04		±5	μA
change		$8 \text{ mA} \leq I_{\text{OUT}} \leq 1.5 \text{ A}$					
		I _L = 8 mA,	1,2,3			±6	
		$3.0~V \leq V_{\text{DIFF}} \leq 50~V$					
Minimum load current	I _{LMIN}	V _{DIFF} = 3.0 V,	1,2,3	04		3	mA
		V_{OUT} = -1.4 V (forced)					
		$V_{DIFF} = 10 V,$	1,2,3			3	
		V_{OUT} = -1.4 V (forced)					
		$V_{DIFF} = 40 V,$	1,2,3			5	
		V_{OUT} = -1.4 V (forced)					
		$V_{\text{DIFF}} = 50 \text{ V},$	1,2,3			5	
		V_{OUT} = -1.4 V (forced)					
Current limit <u>3</u> /	I _{CL}	V _{DIFF} = 5 V	1,2,3	04	1.5	3.5	А
		V _{DIFF} = 50 V	1		0.2	1.0	

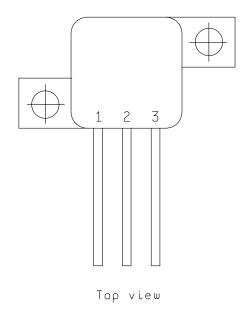

output voltage due to heating effects are covered under the specification for thermal regulation. With exception of cases U and Z, all output measurements are referenced to the case. Measurements taken at the output lead must be adjusted for lead resistance.

 $\underline{3}$ / If not tested, shall be guaranteed to the specified limits.

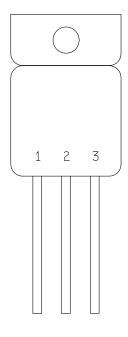
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	9

Case outlines N and Z.

Symbol	Millimete	ers	Inches		
	Min	Мах	Min	Мах	
А	23.11	23.37	0.910	0.920	
A1	10.41	10.67	0.410	0.420	
A2	6.22	6.48	0.245	0.255	
A3	3.05	3.30	0.120	0.130	
øb	0.71	0.81	0.028	0.032	
D	4.70	5.59	0.135	0.220	
D1	2.92	3.18	0.115	0.125	
D2	0.89	1.14	0.035	0.045	
е	2.54 BS0	C	0.100 BSC		
L	10.41	10.67	0.410	0.420	
L1	12.70	19.05	0.500	0.750	
L2	6.22	6.48	0.245	0.255	
L3	3.05	3.30	0.120	0.130	
øP	3.05	3.30	0.120	0.130	


NOTE:

The U.S. government preferred system of measurement is the metric SI system. However, this item was originally designed using inch-pound units of measurement. In the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.


FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	11

Case outlines N and Z $% \left({{{\boldsymbol{x}}_{i}}} \right)$

Case outlines T and U

Top view

Device type	01, 02	03, 04	01, 02	03, 04
Case outlines	N and T	N and T	U and Z	U and Z
	(non-isolated tab)	(non-isolated tab)	(isolated tab)	(isolated tab)
Terminal number	Terminal symbol	Terminal symbol	Terminal symbol	Terminal symbol
1	ADJUST	ADJUST	ADJUST	ADJUST
2	No connection	No connection	Output	Input
3	Input	Output	Input	Output
Tab	Output	Input	No connection	No connection

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	12

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	1
Final electrical parameters	1*, 2, 3, 4**, 5**, 6**
Group A test requirements	1, 2, 3
Group C end-point electrical <u>1</u> / parameters	1,2,3
End-point electrical parameters for Radiation Hardness Assurance (RHA) devices	Not applicable

TABLE II. Electrical test requirements.

1/ As a minimum, for all Group C testing performed after (11-05-20) manufacturers shall perform subgroups 1, 2, and 3 from the Group A electrical test table (Table C-Xa of MIL-PRF-38534).

- * PDA applies to subgroup 1.
- ** Subgroups 4, 5, and 6, if not tested shall be guaranteed to the limits specified in table I.

4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime - VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime - VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-99612
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		B	13

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 11-05-20

Approved sources of supply for SMD 5962-99612 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime - VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/

	1	1
Standard microcircuit drawing PIN <u>1</u> / <u>2</u> /	Vendor CAGE number	Vendor similar PIN <u>3</u> /
5962-9961201HNA 5962-9961201HNC 5962-9961201HTA 5962-9961201HTC 5962-9961201HUA 5962-9961201HUC 5962-9961201HZA 5962-9961201HZA	21845 21845 21845 21845 21845 21845 21845 21845 21845	SDP117NHD SDP117NHG SDP117THD SDP117THG SDP117UHD SDP117UHG SDP117ZHD SDP117ZHG
5962-9961202HNA 5962-9961202HNC 5962-9961202HTC 5962-9961202HTC 5962-9961202HUA 5962-9961202HUC 5962-9961202HZA 5962-9961202HZC	21845 21845 21845 21845 21845 21845 21845 21845 21845	SDP117HVNHD SDP117HVNHG SDP117HVTHD SDP117HVTHG SDP117HVUHD SDP117HVUHG SDP117HVUHG SDP117HVZHD SDP117HVZHG
5962-9961203HNA 5962-9961203HNC 5962-9961203HTA 5962-9961203HTC 5962-9961203HUA 5962-9961203HUC 5962-9961203HZA 5962-9961203HZC	21845 21845 21845 21845 21845 21845 21845 21845 21845	SDP137NHD SDP137NHG SDP137THD SDP137THG SDP137UHD SDP137UHG SDP137ZHD SDP137ZHG
5962-9961204HNA 5962-9961204HNC 5962-9961204HTA 5962-9961204HTC 5962-9961204HUA 5962-9961204HUC 5962-9961204HZA 5962-9961204HZC	21845 21845 21845 21845 21845 21845 21845 21845 21845	SDP137HVNHD SDP137HVNHG SDP137HVTHD SDP137HVTHG SDP137HVUHD SDP137HVUHG SDP137HVZHD SDP137HVZHG

1/ The lead finish shown for each PIN, representing a hermetic package, is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine availability.

2/ The SMD device types listed above are similar to the device types listed on SMD 77034. 5962-9961201HTA through 04HTA are similar to 7703401TA through 04TA. 5962-9961201HUA through 04HUA are similar to 7703401UA through 04UA.

3/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

21845

Solitron Devices, Incorporated 3301 Electronics Way West Palm Beach, FL 33407-4697

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.