![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
GAL20V8Z GAL20V8ZD Zero Power E2CMOS PLD Features * ZERO POWER E2CMOS TECHNOLOGY -- 100A Standby Current -- Input Transition Detection on GAL20V8Z -- Dedicated Power-down Pin on GAL20V8ZD -- Input and Output Latching During Power Down * HIGH PERFORMANCE E CMOS TECHNOLOGY -- 12 ns Maximum Propagation Delay -- Fmax = 83.3 MHz -- 8 ns Maximum from Clock Input to Data Output -- TTL Compatible 16 mA Output Drive -- UltraMOS(R) Advanced CMOS Technology * E2 CELL TECHNOLOGY -- Reconfigurable Logic -- Reprogrammable Cells -- 100% Tested/100% Yields -- High Speed Electrical Erasure (<100ms) -- 20 Year Data Retention * EIGHT OUTPUT LOGIC MACROCELLS -- Maximum Flexibility for Complex Logic Designs -- Programmable Output Polarity -- Architecturally Similar to Standard GAL20V8 * PRELOAD AND POWER-ON RESET OF ALL REGISTERS -- 100% Functional Testability * APPLICATIONS INCLUDE: -- Battery Powered Systems -- DMA Control -- State Machine Control -- High Speed Graphics Processing * ELECTRONIC SIGNATURE FOR IDENTIFICATION I 8 OLMC OE Functional Block Diagram I/CLK I I 8 I 8 I/DPP OLMC IMUX CLK OLMC I/O/Q 2 I/O/Q PROGRAMMABLE AND-ARRAY (64 X 40) 8 OLMC I/O/Q I 8 OLMC I/O/Q I 8 OLMC I/O/Q I 8 OLMC I/O/Q I 8 I/O/Q OLMC I I I/O/Q I IMUX I/OE Description The GAL20V8Z and GAL20V8ZD, at 100 A standby current and 12ns propagation delay provides the highest speed and lowest power combination PLD available in the market. The GAL20V8Z/ZD is manufactured using Lattice Semiconductor's advanced zero power E2CMOS process, which combines CMOS with Electrically Erasable (E2) floating gate technology. The GAL20V8Z uses Input Transition Detection (ITD) to put the device in standby mode and is capable of emulating the full functionality of the standard GAL20V8. The GAL20V8ZD utilizes a dedicated power-down pin (DPP) to put the device in standby mode. It has 19 inputs available to the AND array. Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor delivers 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified. Pin Configuration DIP PLCC I/CLK I/O/Q Vcc NC I I I I/C LK I I 25 I/O/Q I/O/Q 23 I/O/Q NC 21 1 2 3 4 5 6 7 8 9 10 11 12 24 23 Vcc I I/ O/ Q I/ O/ Q I/ O/ Q I/ O/ Q 4 I/DPP I I NC 7 5 2 28 26 I/D P P I I I I I 9 GAL20V8Z GAL20V8ZD Top View 12 I I GAL 20V8Z 20V8ZD 22 21 20 19 I I I I I GND 18 17 16 15 14 13 I/O/Q I/O/Q I/ O/ Q I/ O/ Q I I /O E I/O/Q I/O/Q 11 14 NC GND 16 I/OE I 18 I/O/Q 19 I/O/Q Copyright (c) 1997 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com December 1997 20v8zzd_03 1 Specifications GAL20V8Z GAL20V8ZD GAL20V8Z/ZD Ordering Information GAL20V8Z: Commercial Grade Specifications Tpd (ns) 12 Tsu (ns) 10 Tco (ns) 8 Icc (mA) 55 55 15 15 10 55 55 ISB (A) 100 100 100 100 Ordering # GAL20V8Z-12QP GAL20V8Z-12QJ GAL20V8Z-15QP GAL20V8Z-15QJ Package 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC GAL20V8ZD: Commercial Grade Specifications Tpd (ns) 12 Tsu (ns) 10 Tco (ns) 8 Icc (mA) 55 55 15 15 10 55 55 ISB (A) 100 100 100 100 Ordering # GAL20V8ZD-12QP GAL20V8ZD-12QJ GAL20V8ZD-15QP GAL20V8ZD-15QJ Package 24-Pin Plastic DIP 28-Lead PLCC 24-Pin Plastic DIP 28-Lead PLCC Part Number Description XXXXXXXX _ XX X XX Device Name GAL20V8Z (Zero Power ITD) GAL20V8ZD (Zero Power DPP) Speed (ns) Active Power Q = Quarter Power Grade Blank = Commercial Package P = Plastic DIP J = PLCC 2 Specifications GAL20V8Z GAL20V8ZD Output Logic Macrocell (OLMC) The following discussion pertains to configuring the output logic macrocell. It should be noted that actual implementation is accomplished by development software/hardware and is completely transparent to the user. There are three global OLMC configuration modes possible: simple, complex, and registered. Details of each of these modes is illustrated in the following pages. Two global bits, SYN and AC0, control the mode configuration for all macrocells. The XOR bit of each macrocell controls the polarity of the output in any of the three modes, while the AC1 bit of each of the macrocells controls the input/output configuration. These two global and 16 individual architecture bits define all possible configurations in a GAL20V8Z/ZD. The information given on these architecture bits is only to give a better understanding of the device. Compiler software will transparently set these architecture bits from the pin definitions, so the user should not need to directly manipulate these architecture bits. Compiler Support for OLMC Software compilers support the three different global OLMC modes as different device types. Most compilers also have the ability to automatically select the device type, generally based on the register usage and output enable (OE) usage. Register usage on the device forces the software to choose the registered mode. All combinatorial outputs with OE controlled by the product term will force the software to choose the complex mode. The software will choose the simple mode only when all outputs are dedicated combinatorial without OE control. For further details, refer to the compiler software manuals. When using compiler software to configure the device, the user must pay special attention to the following restrictions in each mode. In registered mode pin 1(2) and pin 13(16) are permanently configured as clock and output enable, respectively. These pins cannot be configured as dedicated inputs in the registered mode. In complex mode pin 1(2) and pin 13(16) become dedicated inputs and use the feedback paths of pin 22(26) and pin 15(18) respectively. Because of this feedback path usage, pin 22(26) and pin 15(18) do not have the feedback option in this mode. In simple mode all feedback paths of the output pins are routed via the adjacent pins. In doing so, the two inner most pins ( pins 18(21) and 19(23)) will not have the feedback option as these pins are always configured as dedicated combinatorial output. When using the standard GAL20V8 JEDEC fuse pattern generated by the logic compilers for the GAL20V8ZD, special attention must be given to pin 4(5) (DPP) to make sure that it is not used as one of the functional inputs. 3 Specifications GAL20V8Z GAL20V8ZD Registered Mode In the Registered mode, macrocells are configured as dedicated registered outputs or as I/O functions. Architecture configurations available in this mode are similar to the common 20R8 and 20RP4 devices with various permutations of polarity, I/O and register placement. All registered macrocells share common clock and output enable control pins. Any macrocell can be configured as registered or I/ O. Up to eight registers or up to eight I/Os are possible in this mode. Dedicated input or output functions can be implemented as subsets of the I/O function. Registered outputs have eight product terms per output. I/Os have seven product terms per output. Pin 4(5) is used as dedicated power-down pin on GAL20V8ZD. It cannot be used as functional input. The JEDEC fuse numbers, including the User Electronic Signature (UES) fuses and the Product Term Disable (PTD) fuses, are shown on the logic diagram on the following page. CLK Registered Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this output configuration. - Pin 1(2) controls common CLK for the registered outputs. - Pin 13(16) controls common OE for the registered outputs. - Pin 1(2) & Pin 13(16) are permanently configured as CLK & OE for registered output configuration. D Q Q XOR OE Combinatorial Configuration for Registered Mode - SYN=0. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this output configuration. - Pin 1(2) & Pin 13(16) are permanently configured as CLK & OE for registered output configuration. XOR Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. 4 Specifications GAL20V8Z GAL20V8ZD Registered Mode Logic Diagram DIP (PLCC) Package Pinouts 1(2) 2640 0 4 8 12 16 20 24 28 32 36 PTD 2(3) 0000 23(27) OLMC XOR-2560 AC1-2632 22(26) 0280 3(4) 0320 OLMC 21(25) XOR-2561 AC1-2633 0600 * 4(5) 0640 OLMC 20(24) XOR-2562 AC1-2634 0920 5(6) 0960 OLMC 19(23) XOR-2563 AC1-2635 1240 6(7) 1280 OLMC XOR-2564 AC1-2636 18(21) 1560 7(9) 1600 OLMC XOR-2565 AC1-2637 17(20) 1880 8(10) 1920 OLMC XOR-2566 AC1-2638 16(19) 2200 9(11) 2240 OLMC XOR-2567 AC1-2639 15(18) 2520 10(12) 11(13) 14(17) OE 2703 13(16) 64-USER ELECTRONIC SIGNATURE FUSES 2568, 2569, .... .... 2630, 2631 Byte7 Byte6 .... .... Byte1 Byte0 MSB LSB SYN-2704 AC0-2705 * Note: Input not available on GAL20V8ZD 5 Specifications GAL20V8Z GAL20V8ZD Complex Mode In the Complex mode, macrocells are configured as output only or I/O functions. Architecture configurations available in this mode are similar to the common 20L8 and 20P8 devices with programmable polarity in each macrocell. Up to six I/Os are possible in this mode. Dedicated inputs or outputs can be implemented as subsets of the I/O function. The two outer most macrocells (pins 15(18) & 22(26)) do not have input capability. Designs requiring eight I/Os can be implemented in the Registered mode. All macrocells have seven product terms per output. One product term is used for programmable output enable control. Pins 1(2) and 13(16) are always available as data inputs into the AND array. Pin 4(5) is used as dedicated power-down pin on GAL20V8ZD. It cannot be used as functional input. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram on the following page. Combinatorial I/O Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1 has no effect on this mode. - Pin 16(19) through Pin 21(25) are configured to this function. XOR Combinatorial Output Configuration for Complex Mode - SYN=1. - AC0=1. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1 has no effect on this mode. - Pin 15(18) and Pin 22(26) are configured to this function. XOR Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. 6 Specifications GAL20V8Z GAL20V8ZD Complex Mode Logic Diagram DIP (PLCC) Package Pinouts 1(2) 2640 0 4 8 12 16 20 24 28 32 36 PTD 2(3) 0000 23(27) OLMC 0280 22(26) 3(4) 0320 XOR-2560 AC1-2632 OLMC 21(25) XOR-2561 AC1-2633 0600 * 4(5) 0640 OLMC 20(24) XOR-2562 AC1-2634 0920 5(6) 0960 OLMC 1240 19(23) 6(7) 1280 XOR-2563 AC1-2635 OLMC 1560 18(21) 7(9) 1600 XOR-2564 AC1-2636 OLMC XOR-2565 AC1-2637 17(20) 1880 8(10) 1920 OLMC XOR-2566 AC1-2638 16(19) 2200 9(11) 2240 OLMC 2520 15(18) 10(12) 11(13) XOR-2567 AC1-2639 14(17) 13(16) 2703 64-USER ELECTRONIC SIGNATURE FUSES 2568, 2569, .... .... 2630, 2631 Byte7 Byte6 .... .... Byte1 Byte0 MSB LSB SYN-2704 AC0-2705 * Note: Input not available on GAL20V8ZD 7 Specifications GAL20V8Z GAL20V8ZD Simple Mode In the Simple mode, macrocells are configured as dedicated inputs or as dedicated, always active, combinatorial outputs. Architecture configurations available in this mode are similar to the common 14L8 and 16P6 devices with many permutations of generic output polarity or input choices. All outputs in the simple mode have a maximum of eight product terms that can control the logic. In addition, each output has programmable polarity. Pins 1(2) and 13(16) are always available as data inputs into the AND array. The center two macrocells (pins 18(21) & 19(23)) cannot be used in the input configuration. Pin 4(5) is used as dedicated power-down pin on GAL20V8ZD. It cannot be used as functional input. The JEDEC fuse numbers including the UES fuses and PTD fuses are shown on the logic diagram. Vcc Combinatorial Output with Feedback Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - All OLMC except pins 18(21) & 19(23) can be configured to this function. XOR Combinatorial Output Configuration for Simple Mode Vcc XOR - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=0 defines this configuration. - Pins 18(21) & 19(23) are permanently configured to this function. Dedicated Input Configuration for Simple Mode - SYN=1. - AC0=0. - XOR=0 defines Active Low Output. - XOR=1 defines Active High Output. - AC1=1 defines this configuration. - All OLMC except pins 18(21) & 19(23) can be configured to this function. Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically. 8 Specifications GAL20V8Z GAL20V8ZD Simple Mode Logic Diagram DIP (PLCC) Package Pinouts 1(2) 2640 0 4 8 12 16 20 24 28 32 36 PTD 2(3) 0000 23(27) OLMC XOR-2560 AC1-2632 22(26) 0280 3(4) 0320 OLMC XOR-2561 AC1-2633 21(25) 0600 * 4(5) 0640 OLMC XOR-2562 AC1-2634 20(24) 0920 5(6) 0960 OLMC XOR-2563 AC1-2635 19(23) 1240 6(7) 1280 OLMC XOR-2564 AC1-2636 18(21) 1560 7(9) 1600 OLMC XOR-2565 AC1-2637 17(20) 1880 8(10) 1920 OLMC XOR-2566 AC1-2638 16(19) 2200 9(11) 2240 OLMC XOR-2567 AC1-2639 15(18) 2520 10(12) 14(17) 11(13) 13(16) 2703 64-USER ELECTRONIC SIGNATURE FUSES 2568, 2569, .... .... 2630, 2631 Byte7 Byte6 .... .... Byte1 Byte0 MSB LSB SYN-2704 AC0-2705 * Note: Input not available on GAL20V8ZD 9 Specifications GAL20V8Z GAL20V8ZD Absolute Maximum Ratings(1) Supply voltage VCC ........................................ -.5 to +7V Input voltage applied .......................... -2.5 to VCC +1.0V Off-state output voltage applied ......... -2.5 to VCC +1.0V Storage Temperature ................................ -65 to 150C Ambient Temperature with Power Applied ........................................... -55 to 125C 1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA) ............................... 0 to 75C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL PARAMETER Input Low Voltage Input High Voltage Input or I/O Low Leakage Current Input or I/O High Leakage Current Output Low Voltage Output High Voltage 0V VIN VIL (MAX.) 3.5V VIN VCC IOL = MAX. Vin = VIL or VIH IOH = MAX. Vin = VIL or VIH IOH = -100 A Vin = VIL or VIH CONDITION MIN. Vss - 0.5 TYP.2 -- -- -- -- -- -- -- -- -- -- MAX. 0.8 Vcc+1 UNITS V V A A V V V mA mA mA VIL VIH IIL IIH VOL VOH IOL IOH IOS1 2.0 -- -- -- 2.4 Vcc-1 -- -- VCC = 5V VOUT = 0.5V TA = 25C -30 -10 10 0.5 -- -- 16 -3.2 -150 Low Level Output Current High Level Output Current Output Short Circuit Current COMMERCIAL ISB Stand-by Power Supply Current VIL = GND VIH = Vcc Outputs Open Z-12/-15 ZD-12/-15 Z-12/-15 ZD-12/-15 -- 50 100 A ICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V ftoggle = 15 MHz Outputs Open -- -- 55 mA 1) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2) Typical values are at Vcc = 5V and TA = 25 C Capacitance (TA = 25C, f = 1.0 MHz) SYMBOL CI CI/O PARAMETER Input Capacitance I/O Capacitance MAXIMUM* 10 10 UNITS pF pF TEST CONDITIONS VCC = 5.0V, VI = 2.0V VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested 10 Specifications GAL20V8Z Specifications GAL20V8Z GAL20V8ZD AC Switching Characteristics Over Recommended Operating Conditions COM PARAMETER COM TEST COND1. A A -- -- -- A DESCRIPTION MIN. Input or I/O to Combinational Output Clock to Output Delay Clock to Feedback Delay Setup Time, Input or Feedback before Clock Hold Time, Input or Feedback after Clock Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled OE to Output Enabled Input or I/O to Output Disabled OE to Output Disabled Last Active Input to Standby Standby to Active Output 3 2 -- 10 0 55 -12 MAX. MIN. 12 8 6 -- -- -- 3 2 -- 15 0 40 -15 MAX. 15 10 7 -- -- -- UNITS ns ns ns ns ns MHz tpd tco tcf2 tsu th fmax3 A A 62.5 83.3 -- -- 45.5 62.5 -- -- MHz MHz twh twl ten tdis tas tsa4 -- -- B B C C -- -- 6 6 -- -- -- -- 60 6 -- -- 12 12 15 12 140 13 8 8 -- -- -- -- 50 5 -- -- 15 15 15 15 150 15 ns ns ns ns ns ns ns ns 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Specification section. 3) Refer to fmax Specification section. 4) Add tsa to tpd, tsu, ten and tdis when the device is coming out of standby state. Standby Power Timing Waveforms Icc POWER Isb INPUT or I/O FEEDBACK ten, tdis OE * CLK tco OUTPUT tsu * Note: Rising clock edges are allowed during tsa but outputs are not guaranteed. tas tsa tpd 11 Specifications GAL20V8Z Specifications GAL20V8ZD GAL20V8ZD AC Switching Characteristics Over Recommended Operating Conditions COM PARAMETER COM TEST COND1. A A -- -- -- A DESCRIPTION Input or I/O to Combinational Output Clock to Output Delay Clock to Feedback Delay Setup Time, Input or Feedback before Clock Hold Time, Input or Feedback after Clock Maximum Clock Frequency with External Feedback, 1/(tsu + tco) Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) Maximum Clock Frequency with No Feedback Clock Pulse Duration, High Clock Pulse Duration, Low Input or I/O to Output Enabled OE to Output Enabled Input or I/O to Output Disabled OE to Output Disabled 3 2 -- 10 0 55 -12 MIN. MAX. 12 8 6 -- -- -- -15 MIN. MAX. 3 2 -- 15 0 40 15 10 7 -- -- -- UNITS ns ns ns ns ns MHz tpd tco tcf2 tsu th fmax3 A A 62.5 83.3 -- -- 45.5 62.5 -- -- MHz MHz twh twl ten tdis -- -- B B C C 6 6 -- -- -- -- -- -- 12 12 15 12 8 8 -- -- -- -- -- -- 15 15 15 15 ns ns ns ns ns ns 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Specification section. 3) Refer to fmax Specification section. 12 Specifications GAL20V8Z Specifications GAL20V8ZD GAL20V8ZD Dedicated Power-Down Pin Specifications Over Recommended Operating Conditions COM PARAMETER COM TEST COND1. -- -- DESCRIPTION DPP Pulse Duration High DPP Pulse Duration Low 12 25 -12 MIN. MAX. -- -- -15 MIN. MAX. 15 30 -- -- UNITS ns ns twhd twld tivdh tgvdh tcvdh tdhix tdhgx tdhcx tdliv tdlgv tdlcv tdlov ACTIVE TO STANDBY -- -- -- -- -- -- Valid Input before DPP High Valid OE before DPP High Valid Clock Before DPP High Input Don't Care after DPP High OE Don't Care after DPP High Clock Don't Care after DPP High 5 0 0 -- -- -- -- -- -- 2 6 8 8 0 0 -- -- -- -- -- -- 5 9 11 ns ns ns ns ns ns STANDBY TO ACTIVE -- -- -- A DPP Low to Valid Input DPP Low to Valid OE DPP Low to Valid Clock DPP Low to Valid Output 12 16 18 5 -- -- -- 24 15 20 20 5 -- -- -- 30 ns ns ns ns 1) Refer to Switching Test Conditions section. Dedicated Power-Down Pin Timing Waveforms DPP tivdh INPUT or I/O FEEDBACK tgvdh OE tcvdh CLK tc o tpd,ten,tdis tdhix tdliv tdhgx tdlgv tdhcx tdlcv tdlov OUTPUT 13 Specifications GAL20V8Z GAL20V8ZD Switching Waveforms INPUT or I/O FEEDBACK VALID INPUT INPUT or I/O FEEDBACK VALID INPUT tsu CLK th tpd COMBINATIONAL OUTPUT tco REGISTERED OUTPUT Combinatorial Output 1/fmax (external fdbk) INPUT or I/O FEEDBACK Registered Output tdis COMBINATIONAL OUTPUT ten OE tdis Input or I/O to Output Enable/Disable REGISTERED OUTPUT ten OE to Output Enable/Disable twh CLK 1/fmax (w/o fb) twl CLK 1/fmax (internal fdbk) tcf REGISTERED FEEDBACK tsu Clock Width fmax with Feedback 14 Specifications GAL20V8Z GAL20V8ZD fmax Specifications CL K LOGIC ARR AY R EG I S T E R CLK LOGIC ARRAY ts u tc o REGISTER fmax with External Feedback 1/(tsu+tco) Note: fmax with external feedback is calculated from measured tsu and tco. CLK tcf tpd fmax with Internal Feedback 1/(tsu+tcf) LOGIC ARRAY REGISTER tsu + th fmax with No Feedback Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%. Switching Test Conditions Input Pulse Levels Input Rise and Fall Times Input Timing Reference Levels Output Timing Reference Levels Output Load GND to 3.0V 3ns 10% - 90% 1.5V 1.5V See Figure Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd. +5V R1 3-state levels are measured 0.5V from steady-state active level. FROM OUTPUT (O/Q) UNDER TEST TEST POINT Output Load Conditions (see figure) Test Condition A B Active High Active Low C Active High Active Low R1 300 300 300 R2 390 390 390 390 390 CL 50pF 50pF 50pF 5pF 5pF R2 C L* *C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE 15 Specifications GAL20V8Z GAL20V8ZD Electronic Signature An electronic signature word is provided in every GAL20V8Z/ZD device. It contains 64 bits of reprogrammable memory that can contain user defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell. NOTE: The electronic signature is included in checksum calculations. Changing the electronic signature will alter checksum. Output Register Preload When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because, in system operation, certain events occur that may throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions. The GAL20V8Z/ZD devices includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing text vectors perform output register preload automatically. Security Cell A security cell is provided in the GAL20V8Z/ZD devices to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The electronic signature data is always available to the user, regardless of the state of this security cell. Input Buffers GAL20V8Z/ZD devices are designed with TTL level compatible input buffers. These buffers, with their characteristically high impedance, load driving logic much less than traditional bipolar devices. This allows for a greater fan out from the driving logic. GAL20V8Z/ZD input buffers have latches within the buffers. As a result, when the device goes into standby mode the inputs will be latched to its values prior to standby. In order to overcome the input latches, they will have to be driven by an external source. Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins for both devices be connected to another active input, VCC, or GND. Doing this will tend to improve noise immunity and reduce ICC for the device. Typical Input Characteristic 40 30 Device Programming GAL devices are programmed using a Lattice Semiconductorapproved Logic Programmer, available from a number of manufacturers (see the GAL Development Tools Section of the Data Book). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle. Input Transition Detection (ITD) The GAL20V8Z relies on its internal input detection circuitry to put the device in power down mode. If there is no input transition for the specified period of time, the device will go into the power down state. Any valid input transition will put the device back into active state. The first rising clock transition from power-down state only acts as a wake up signal into the device and will not clock the data input through to the output (refer to standby power timing waveform for more detail). Any input pulse widths greater than 5ns at input voltage level of 1.5V will be detected as input transition. The device will not detect any input pulse widths less than 1ns measured at input voltage level of 1.5V as input transition. Input Current (uA) 20 10 0 -10 -20 -30 Dedicated Power-Down Pin The GAL20V8ZD uses pin 4 (pin 5 on PLCC) as the dedicated power-down signal to put the device in power-down state. DPP is an active high signal where logic high driven on this signal puts the device into power-down state. Input pin 4 (5) cannot be used as a functional input on this device. -40 0 1 2 3 4 5 Input Voltage (Volts) 16 Specifications GAL20V8Z GAL20V8ZD Power-Up Reset Vcc (min.) Vcc tsu CLK twl tpr INTERNAL REGISTER Q - OUTPUT Internal Register Reset to Logic "0" FEEDBACK/EXTERNAL OUTPUT REGISTER Device Pin Reset to Logic "1" Circuitry within the GAL20V8Z/ZD provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, 1s MAX). As a result, the state on the registered output pins (if they are enabled) will always be high on power-up, regardless of the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asynchronous nature of system power-up, some conditions must be met to provide a valid power-up reset of the GAL20V8Z/ZD. First, the VCC rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements. Input/Output Equivalent Schematics PIN PIN Feedback Vcc Vcc Vcc ESD Protection Circuit Vcc Tri-State Control PIN Data Output PIN ESD Protection Circuit Feedback (To Input Buffer) Typical Input Typical Output 17 Specifications GAL20V8Z GAL20V8ZD Typical AC and DC Characteristics Normalized Tpd vs Vcc 1.2 1.2 Normalized Tco vs Vcc 1.4 Normalized Tsu vs Vcc Normalized Tpd Normalized Tco 1.1 PT L->H 1 1.1 FALL Normalized Tsu PT H->L RISE 1.3 1.2 1.1 1 0.9 0.8 PT H->L PT L->H 1 0.9 0.9 0.8 4.50 4.75 5.00 5.25 5.50 0.8 4.50 4.75 5.00 5.25 5.50 4.50 4.75 5.00 5.25 5.50 Supply Voltage (V) Supply Voltage (V) Supply Voltage (V) Normalized Tpd vs Temp 1.3 1.3 Normalized Tco vs Temp 1.4 Normalized Tsu vs Temp Normalized Tpd Normalized Tco Normalized Tsu 1.2 1.1 1 0.9 0.8 0.7 PT H->L PT L->H 1.2 1.1 1 0.9 0.8 0.7 RISE FALL 1.3 1.2 1.1 1 0.9 0.8 0.7 PT H->L PT L->H 0 0 -55 -25 25 50 75 100 100 125 125 -55 -25 25 50 75 0 100 Temperature (deg. C) Temperature (deg. C) Temperature (deg. C) Delta Tpd vs # of Outputs Switching 0 0 Delta Tco vs # of Outputs Switching Delta Tpd (ns) -0.5 Delta Tco (ns) -0.5 -1 -1 RISE -1.5 RISE -1.5 FALL -2 1 2 3 4 5 6 7 8 FALL -2 1 2 3 4 5 6 7 8 Number of Outputs Switching Delta Tpd vs Output Loading 10 10 Number of Outputs Switching Delta Tco vs Output Loading Delta Tpd (ns) 8 6 4 2 0 -2 0 50 RISE FALL Delta Tco (ns) 8 6 4 2 0 -2 RISE FALL 100 150 200 250 300 0 50 100 150 200 250 300 Output Loading (pF) Output Loading (pF) 18 125 -55 -25 25 50 75 Specifications GAL20V8Z GAL20V8ZD Typical AC and DC Characteristics Vol vs Iol 1.5 1.25 5 4 Voh vs Ioh 5 4.5 Voh vs Ioh Voh (V) Voh (V) Vol (V) 1 0.75 0.5 0.25 0 0.00 20.00 40.00 60.00 3 2 1 0 0.00 10.00 20.00 30.00 40.00 50.00 60.00 4 3.5 3 2.5 0.00 1.00 2.00 3.00 4.00 Iol (mA) Ioh(mA) Ioh(mA) Normalized Icc vs Vcc 1.30 1.2 Normalized Icc vs Temp 1.30 Normalized Icc vs Freq. (DPP & ITD > 10MHz) Normalized Icc Normalized Icc 1.20 1.10 1.00 0.90 0.80 0.70 4.50 4.75 5.00 5.25 5.50 Normalized Icc -55 -25 0 25 50 75 100 125 1.1 1.20 1.10 1.00 0.90 0.80 0 25 50 75 100 1 0.9 0.8 Supply Voltage (V) Temperature (deg. C) Frequency (MHz) Delta Icc vs Vin (1 input) 5 0 10 Input Clamp (Vik) 1 Normalized Icc vs Freq. (ITD) Delta Icc (mA) 20 3 2 1 0 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Iik (mA) 30 40 50 60 70 80 90 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 Normalized Icc 4 0.8 0.6 0.4 0.2 0 1 10 100 1000 10000 Vin (V) Vik (V) Frequency (KHz) 19 |
Price & Availability of GAL20V8Z
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |