Part Number Hot Search : 
A472M HC257 AAT11 MAJ160 352210 416CH07E W20013TV MC68HC1
Product Description
Full Text Search
 

To Download GA75TS60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -50050D
GA75TS60U
"HALF-BRIDGE" IGBT INT-A-PAK
Features
* Generation 4 IGBT technology * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.7V
@VGE = 15V, IC = 75A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current* Peak Switching Current Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 75 150 150 150 20 2500 285 150 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3 T Weight of Module
Typ.
-- -- 0.1 -- -- 200
Max.
0.44 0.70 -- 6.0 5.0 --
Units
C/W N. m g
www.irf.com
1
05/20/02
GA75TS60U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 -- -- VGE = 0V, IC = 1mA -- 1.7 2.2 VGE = 15V, IC = 75A -- 1.76 -- V VGE = 15V, IC = 75A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 0.5mA Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = V GE, IC = 500A Forward Transconductance -- 83 -- S VCE = 25V, I C = 75A Collector-to-Emitter Leaking Current -- -- 1.0 mA VGE = 0V, VCE = 600V -- -- 10 VGE = 0V, VCE = 600V, TJ = 125C Diode Forward Voltage - Maximum -- 3.3 -- V IF = 75A, VGE = 0V -- 3.1 -- IF = 75A, VGE = 0V, TJ = 125C Gate-to-Emitter Leakage Current -- -- 250 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 340 48 120 110 94 250 180 1.95 4.4 6.35 7880 770 98 133 94 6274 2061 Max. Units Conditions 510 VCC = 400V, VGE = 15V 72 nC IC = 75A 170 TJ = 25C -- RG1 = 27, RG2 = 0, -- ns IC = 75A -- VCC = 360V -- VGE = 15V -- mJ -- 12.6 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 75A -- A RG1 = 27 -- nC RG2 = 0 -- A/s VCC = 360V di/dt =1300A/s
2
www.irf.com
GA75TS60U
70
For both:
60
LOAD CURRENT (A)
50
D uty cy cle: 50% TJ = 125C T s ink = 90C G ate drive as specifiedW Power Dissipation = 65
P ow e r Dis sip ation = 270 W
40
30
20
10
0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150 o C 25 TJ = 25 o C
10
25 TJ = 150 o C
TJ = 25 o C V = 15V 20s PULSE WIDTH
GE 1.5 2.0 2.5
10 1.0
1 5.0
V = 50V 5s PULSE WIDTH
VCE = 25V CC 25V 80s PULSE WIDTH
8.0 6.0 7.0 9.0
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA75TS60U
80 3.0
60
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
I C = 150 A
40
2.0
I C = 75 A
37.5A I C =37.5 A
20
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
, Junction Temperature ( C) TTJ Junction Temperature (C) J,
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
T h erm al Im p e d a n ce - Z
th JC
0.1
D = 0 .5 0 0 .2 0 0.1 0 0.0 5 0 .0 2 0 .0 1 S in g le P u ls e (Th e rm a l R e s is ta n c e )
Notes: 1. Duty factor D = t
P DM
t
1 t2
1
/t
2
2. Peak TJ = PDM x Z thJC + T C
0.01 0.0001
0.001
0.01
0.1
1
10
100
1000
t 1 , R ec ta n g ular Pu ls e D u ratio n (S e co n d s )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA75TS60U
14000
VGE , Gate-to-Emitter Voltage (V)
12000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 75A
16
C, Capacitance (pF)
10000
Cies
8000
12
6000
C oes C res
8
4000
4
2000
0 1 10 100
0 0 100 200 300 400
VCE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 360V VGE = 15V TJ = 125C 25 C 9 I C = 75A
100
RG1=27;RG2 = 0 G = Ohm VGE = 15V VCC = 360V
8
IC = 150 A
10
IC = 75 A IC = 37.5 A
7
6
5 0 10 20 30 40 50
RG G1 Gate Resistance (Ohm) R , , Gate Resistance ( )
1 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA75TS60U
25
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
RG = 27;RG2 = 0 G1 = Ohm T J = 125 C VCC = 360V 20 VGE = 15V
200
V G E E 20V G= T J = 125C V C E m easured at term inal (Peak V oltage)
160
15
120
SAFE OPERATING AREA
10
80
5
40
0 0 40 80 120 160 200 240
0 0 100 200 300 400 500 600
A
700
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Reverse Bias SOA
12000
In sta n ta n e o u s F o rw a rd C u rre n t - I F (A )
I F = 15 0A
10000
I F = 75 A I F = 38 A
8000
100
Q R R - (nC )
6000
T J = 125 C T J = 25C
4000
2000
VR = 36 0 V TJ = 12 5 C TJ = 25 C
10 1.0 2.0 3.0 4.0 5.0
0 500
1000
1500
2000
F o r w a rd V o lta g e D ro p - V F M (V )
d i f /dt - (A /s)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA75TS60U
200 140
I F = 15 0A IF = 75A I F = 3 8A
160 100 120
I F = 1 5 0A I F = 75A IF = 38A
I IR R M - (A )
VR = 36 0 V TJ = 12 5 C TJ = 25 C
t rr - (ns)
80
120
60
40 80
20
40 500
VR = 36 0 V TJ = 12 5 C TJ = 25 C
1000 1500 2000
1000
1500
2000
0 500
d i f /d t - (A / s)
d i f /d t - (A /s)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA75TS60U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
t1 + 5 S V c e Ic Vceic d tdt t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA75TS60U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
RL= 0 - 480V
480V 4 X IC @25C
Figure 22. Pulsed Collector Current TestCircuit
www.irf.com
9
GA75TS60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T For screws M5. U Pulse width 50s; single shot.
Case Outline -- INT-A-PAK
94.70 93.70 80.30 79.70 3.689] [3.728 NOTES : 1. ALL DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 2. CONTROL LING DIMENS ION: MILLIMETER. 4.50 3.50 6 7 17.50 16.50 1 8 9 2 3 5 4 6.80 2X O 6.20 .244] [.267 4X FAST ON TAB (110) 2.8 x 0.5 [.110 x .020] .650] [.689 .138] [.177
[
3.161 3.138] 2X 23.50 22.50 .886] [.925
11 10 34.70 33.70 1.327] [1.366
3X M5 8 [.314] MAX.
42.00 41.00
1.614] [1.654
8.00 6.60
.260] [.315
24.00 23.00
.906] [.945
30.50 29.00
1.142] [1.201
0.15 [.0059] CONVEX 92.10 91.10 3.587] [3.626
8.65 7.65
.301] [.341 32.00 31.00 1.220] [1.260
2X 13.30 12.70
.500] [.524
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA75TS60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X