|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET MOS INTEGRATED CIRCUIT PD75P336 4-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The PD75P336 is a version of the PD75336 in which the on-chip mask ROM is replaced by one-time PROM. As the PD75P336 is user-programmable, it is suitable for preproduction in system development, and for short-run and multiple device-production. Detailed function description, etc. are described in the following User's manual. Be sure to read it when designing. PD75336 User's Manual: IEU-725 FEATURES * PD75336 compatible * Memory capacity: * PROM : 16256 x 8 bits * RAM : 768 x 4 bits * Operable over same supply voltage range as mask ROM PD75336 * VDD = 2.7 to 6.0 V * On-chip 8-bits resolution A/D converter (successive approximation type) * On-chip LCD controller/driver ORDERING INFORMATION Ordering Code Package 80-pin plastic QFP ( 14mm) 80-pin plastic TQFP (fine pitch)( 12mm) Quality Grade Standard Standard PD75P336GC-3B9 PD75P336GK-BE9 5 Note Pull-up resistor cannot be incorporated by mask option. Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. The information in this document is subject to change without notice. Document No. IC-2980A (O. D. No. IC-8371A) Date Published October 1993P Printed in Japan The mark 5 shows major revised points. (c) NEC Corporation 1993 2 BLOCK DIAGRAM AN0-AN7* 8 AVREF AVSS A/D CONVERTER PORT0 BASIC INTERVAL TIMER INTBT PROGRAM COUNTER (15) SP(8) CY ALU PORT 3 PORT 4 4 4 P30-P33 /MD0-MD3 P40-P43 4 P00-P03 PORT 1 4 P10-P13 PORT 2 4 P20-P23 TI0/P13 PTO0/P20 TIMER/EVENT COUNTER #0 INTT0 TIMER/EVENT COUNTER #1 TI1/P80 PTO1/P21 BANK INTT1 WATCH TIMER GENERAL REG. PROGRAM MEMORY (ROM) 16256 x 8 BITS DECODE AND CONTROL PORT 5 4 P50-P53 PORT 6 4 P60-P63 BUZ/P23 PORT 7 DATA MEMORY (RAM) 768 x 4 BITS 4 P70-P73 INTW SI/SB1/P03 SO/SB0/P02 SCK/P01 fLCD CLOCKED SERIAL INTERFACE INTCSI PORT 8 4 P80-P83 12 8 INTERRUPT CONTROL 8 S12-S23 S24/BP0 -S31/BP7 COM0-COM3 VLC0-VLC2 BIAS LCDCL/P30 SYNC/P31 INT0/P10 INT1/P11 INT2/P12 INT4/P00 KR0/P60 -KR3/P63 KR4/P70 -KR7/P73 fX / 2 N SYSTEM CLOCK CLOCK CLOCK GENERATOR STAND BY OUTPUT DIVIDER SUB MAIN CONTROL CONTROL PCL/P22 * XT1 XT2 X1 X2 AN6/P82, AN7/P83 CPU CLOCK fLCD LCD CONTROLLER /DRIVER 4 3 BIT SEQ. BUFFER (16) PD75P336 VPP VDD VSS RESET PD75P336 PIN CONFIGURATION (Top View) q 80-pin plastic QFP (s 14mm) s q 80-pin plastic TQFP (fine pitch) (s 12mm) s P73/KR7 P72/KR6 P71/KR5 P70/KR4 P63/KR3 P62/KR2 P61/KR1 P60/KR0 RESET X2 AVREF AVSS AN5 AN4 AN3 5 X1 VPP* XT2 XT1 S31/BP7 S30/BP6 S29/BP5 S28/BP4 S27/BP3 S26/BP2 S25/BP1 S24/BP0 S23 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 S12 1 2 3 4 5 6 7 8 9 8079787776 757473 7271 70696867666564636261 VDD 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 AN2 AN1 AN0 P83/AN7 P82/AN6 P81 P80/TI1 P33/MD3 P32/MD2 P31/SYNC/MD1 P30/LCDCL/MD0 P23/BUZ P22/PCL P21/PTO1 P20/PTO0 P13/TI0 P12/INT2 P11/INT1 P10/INT0 P03/SI/SB1 PD75P336GC-3B9 PD75P336GK-BE9 10 11 12 13 14 15 16 17 18 19 20 2122232425 262728 2930 31323334353637383940 P53 P00/INT4 * In normal operation, VPP should be connected to VDD directly. P01/SCK P02/SO/SB0 COM0 COM1 COM2 COM3 BIAS VLC0 VLC1 VLC2 P41 P42 P43 VSS P40 P50 P51 P52 3 PD75P336 PIN NAME P00 to 03 P10 to 13 P20 to 23 P30 to 33 P40 to 43 P50 to 53 P60 to 63 P70 to 73 P80 to 83 BP0 to 7 KR0 to 7 AVREF AVSS AN0 to 7 SCK SI SO MD0 to 3 VPP : : : : : : : : : : : : : : : : : : : Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Bit Port Key Return Analog Reference Analog Ground Analog Input 0 to 7 Serial Clock Serial Input Serial Output Mode Selection Programming/Verifying Power Supply SB0, 1 RESET S12 to 31 COM0 to 3 VLC0 to 2 BIAS LCDCL SYNC TI0, 1 PTO0, 1 BUZ PCL INT0, 1, 4 INT2 X1, 2 XT1, 2 VDD VSS : : : : : : : : : : : : : : : : : : Serial Bus 0,1 Reset Input Segment Output 12 to 31 Common Output 0 to 3 LCD Power Supply 0 to 2 LCD Power Supply Bias Control LCD Clock LCD Synchronization Timer Input 0, 1 Programmable Timer Output 0, 1 Buzzer Clock Programmable Clock External Vectored Interrupt 0, 1, 4 External Test Interrupt 2 Main System Clock Oscillation 1, 2 Subsystem Clock Oscillation 1, 2 Positive Power Supply Ground 4 PD75P336 CONTENTS 1. PIN FUNCTIONS ......................................................................................................................................... 6 1.1 1.2 1.3 PORT PINS ............................................................................................................................................................. 6 OTHER PINS .......................................................................................................................................................... 8 PIN INPUT/OUTPUT CIRCUITS ...........................................................................................................................10 2. DIFFERENCES BETWEEN PD75P336 AND PD75336 ......................................................................... 13 2.1 2.2 PROGRAM MEMORY (PROM) 16256 WORDS x 8 BITS .................................................................................. 14 DATA MEMORY (RAM) 768 WORDS x 4 BITS .................................................................................................. 15 3. INSTRUCTION SET AND INSTRUCTION OPERATIONS ....................................................................... 16 4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS .................................. 25 4.1 4.2 4.3 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES ........................................................................... 26 PROGRAM MEMORY WRITE PROCEDURE ....................................................................................................... 27 PROGRAM MEMORY READ PROCEDURE ......................................................................................................... 28 5. ELECTRICAL SPECIFICATIONS ................................................................................................................ 29 6. PACKAGE INFORMATION ........................................................................................................................ 48 7. RECOMMENDED SOLDERING CONDITIONS ......................................................................................... 50 APPENDIX A. LIST OF FUNCTIONS.............................................................................................................. 51 APPENDIX B. DEVELOPMENT TOOLS ......................................................................................................... 52 5 PD75P336 1. PIN FUNCTIONS 1.1 PORT PINS (1/2) Pin Name P00 P01 P02 P03 P10 P11 Input/Output Input Input/output Input/output Input/output DualFunction Pin INT4 SCK SO/SB0 SI/SB1 INT0 INT1 Function 8-bit I/O After Reset I/O Circuit Type *1 B 4-bit input port (PORT0) Internal pull-up resistor specification by software is possible for P01 to P03 as a 3-bit unit. x F -A Input F -B M-C With noise elimination circuit Input P12 P13 P20 P21 Input/output P22 P23 P30 *2 P31 *2 Input/output P32 *2 P33 *2 MD2 MD3 PCL BUZ LCDCL MD0 SYNC MD1 INT2 TI0 PTO0 PTO1 4-bit input port (PORT1) Internal pull-up resistor specification by software is possible as a 4-bit unit. x Input B -C 4-bit input/output port (PORT2) Internal pull-up resistor specification by software is possible as a 4-bit unit. x Input E-B Programmable 4-bit input/output port (PORT3) Input/output settable bit-wise. Internal pull-up resistor specification by software is possible as a 4-bit unit. x Input E-B P40 to P43 *2 Input/output -- N-ch open-drain 4-bit input/output port (PORT 4). Data input/output pins for program memory (PROM) write/verify (low-order 4 bits). N-ch open-drain 4-bit input/output port (PORT 5) Data input/output pins for program memory (PROM) write/verify (high-order 4 bits). Input M-B P50 to P53 *2 Input/output -- Input M-B P60 P61 P62 P63 P70 P71 P72 P73 Input/output Input/output KR0 KR1 KR2 KR3 KR4 KR5 KR6 KR7 4-bit input/output port (PORT7). Internal pull-up resistor specification by software is possible as a 4-bit unit. Programmable 4-bit input/output port (PORT6). Input/output settable bit-wise. Internal pull-up resistor specification by software is possible as a 4-bit unit. Input F -A Input F -A * 1. 2. : Indicates a Schmitt-triggered input. Direct LED drive capability. 6 PD75P336 1.1 PORT PINS (2/2) Pin Name P80 P81 Input/Output DualFunction Pin TI1 -- Function 8-bit I/O After Reset I/O Circuit Type E-E Input/output P82 P83 BP0 BP1 Output BP2 BP3 BP4 BP5 Output BP6 BP7 S30 S31 S26 S27 S28 S29 AN6 AN7 S24 S25 4-bit input/output port (PORT8). Internal pull-up resistor specification by software is possible as a 4-bit unit. x E-B Input Y-B 1-bit output port (BIT PORT) Dual function as segment output pins. x * G-C * VLCX shown below can be selected for the display outputs. S12 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0 However, display output levels depend on the display outputs and VLCX external circuit. 7 PD75P336 1.2 OTHER PINS (1/2) Pin Name TI0 Input/Output DualFunction Pin P13 Function After Reset I/O Circuit Type * B -C Input TI1 PTO0 output PTO1 PCL BUZ SCK SO/SB0 output output Input/output Input/output P21 P22 P23 P01 P02 P80 P20 External event pulse input pin for timer/event counter. Input B -E Timer/event counter output pin Input E-B Clock output pin Frequency output pin (for buzzer or system clock trimming) Serial clock input/output pin Serial data output pin Serial bus input/output pin Serial data input pin Serial bus input/output pin Edge-detected vectored interrupt input pin (both rising and falling edge detection valid). Edge-detected vectored interrupt input pin (detected edge selectable) Edge-detected testable input pin (rising edge detection) Clocked Input Input Input Input E-B E-B F -A F -B SI/SB1 Input/output P03 Input M-C B INT4 INT0 Input P00 P10 Input Input INT1 INT2 KR0 to KR3 KR4 to KR7 Input Input Input P11 P12 P60 to P63 P70 to P73 Input Asynchronous Asynchronous Input Input Input B -C B -C F -A F -A Parallel falling edge detected testable input pins. Parallel falling edge detected testable input pins. Main system clock oscillation crystal/ceramic resonator inputs. When an external clock is used, the clock is input to X1 and the inverted clock to X2. Subsystem clock oscillation crystal reasonator inputs When an external clock is used, the clock is input to XT1 and the inverted clock toXT2. XT1 can be used as a 1bit input (test) pin. System reset input pin. Mode selection pin for program memory (PROM) write/ verify. Program voltage application pin for program memory (PROM) write/verify. Applies +12.5 V in program memory write/verify. Directly connected to VDD in normal operation. Positive power supply pin GND potential pin X1, X2 -- -- -- -- XT1, XT2 -- -- -- -- RESET MD0 to MD3 Input Input/output -- P30 to P33 -- Input B E-B VPP -- -- -- -- VDD VSS -- -- -- -- -- -- -- -- * : indicates a Schmitt-triggered input. 8 PD75P336 1.2 OTHER PINS (2/2) Pin Name S12 to S23 S24 to S31 COM0 to COM3 VLC0 to VLC2 BIAS LCDCL*1 SYNC *1 AN0 to AN5 AN6 AN7 AVREF AVSS Input/Output Output Output Output Input Output Output Output DualFunction Pin -- BP0 to 7 -- -- -- P30 P31 -- Function Segment signal output pins Segment signal output pins Common signal output pins LCD drive power supply pins External split cutting output pin External extension driver drive clock output pin External extension driver synchronization drive clock output pin After Reset *2 *2 *2 -- High impedance I/O Circuit Type G-A G-C G-B -- -- Input Input E-B E-B Y A/D converter analog signal input pins Input Y -B P83 Input -- -- -- A/D converter reference voltage input pin A/D converter GND potential pin -- -- Z Z Input P82 * 1. 2. Pins provided for future system expansion. Currently used only as pins 30 and 31. VLCX shown below can be selected for the display outputs. S12 to S31: VLC1, COM0 to COM2: VLC2, COM3:VLC0 However, display output levels depend on the display outputs and VLCX external circuit. 9 PD75P336 1.3 PIN INPUT/OUTPUT CIRCUITS The input/output circuits for each of the pin PD75P336 are shown below in partially simplified form. TYPE A (For TYPE E-B) VDD data P-ch IN N-ch output disable N-ch P-ch OUT TYPE D (For TYPE E-B, F-A) VDD CMOS Standard Input Buffer TYPE B Push-Pull Output that can be Made High-Impedance Output (P-ch and N-ch OFF) TYPE E-B VDD P.U.R. output disable P-ch IN data Type D output disable IN/OUT Type A P.U.R.:Pull-Up Resistor Schmitt-Trigger Input with Hysteresis Characteristic TYPE B-C TYPE E-E VDD P.U.R. VDD P.U.R. P.U.R. enable P.U.R. enable data output disable Type D P-ch IN/OUT P-ch Type A IN Type B P.U.R. : Pull-Up Resistor Schmitt-Trigger Input with Hysteresis Characteristic P.U.R.:Pull-Up Resistor 10 PD75P336 TYPE F-A VDD P.U.R. P.U.R. enable data Type D output disable P-ch TYPE G-B VLC0 VLC1 P-ch N-ch IN/OUT P-ch OUT COM data N-ch Type B P-ch VLC2 N-ch P.U.R.:Pull-Up Resistor TYPE F-B VDD P.U.R. P.U.R. enable P-ch VDD P-ch TYPE G-C VDD P-ch VLC0 VLC1 P-ch SEG data/Bit Port data VLC2 N-ch OUT N-ch output disable (P) data output disable output disable (N) IN/OUT N-ch P.U.R.:Pull-Up Resistor TYPE G-A TYPE M-B VLC0 P-ch VLC1 P-ch SEG data N-ch VLC2 N-ch Middle-High Voltage Input Buffer data output disable N-ch IN/OUT OUT 11 PD75P336 TYPE M-C VDD P.U.R. P.U.R. enable P-ch IN/OUT TYPE Y-B VDD P.U.R enable data output disable Type D P-ch IN/OUT data output disable N-ch Type A Type Y P.U.R.:Pull-Up Resistor P.U.R:Pull-Up Resistor TYPE Y TYPE Z VDD IN VDD P-ch N-ch + IN Sampling C - AVSS AVSS Reference Voltage (From Series Resistance Voltage Tap) Reference Voltage input enable AVSS 12 PD75P336 2. DIFFERENCES BETWEEN PD75P336 AND PD75336 Parameter Program memory Data memory Ports 4, 5 pull-up resistor LCD drive power supply split resistor Subsystem clock oscillation feedback resistor Pin 69 PD75336 Mask ROM 16256 x 8 bits 768 x 4 bits Incorporation specifiable by mask option Incorporation specifiable by mask option Incorporation specifiable by mask option IC PD75P336 One-time PROM 16256 x 8 bits 768 x 4 bits No No Incorporated VPP 13 PD75P336 2.1 PROGRAM MEMORY (PROM) ..... 16256 WORDS x 8 BITS The program memory consists of 16256-byte PROM. The program memory map is shown in Fig. 2-1. Fig. 2-1 Program Memory Map 7 0000H MBE 6 RBE 0 Internal Reset Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 0002H MBE RBE INTBT/INT4 Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 0004H MBE RBE INT0 Start Address (High-Order 6 Bits) (Low-Order 8 Bits) CALLF !faddr Instruction Entry Address BRCB !caddr Instruction Branch Address BR !addr Instruction Branch Address CALL !addr Instruction Branch Address 0006H MBE RBE INT1 Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 0008H MBE RBE INTCSI Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 000AH MBE RBE INTT0 Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 000CH MBE RBE INTT1 Start Address (High-Order 6 Bits) (Low-Order 8 Bits) 0020H GETI Instruction Reference Table Branch/Call Address, by GETI BR $addr Instruction Relative Branch Address (-15 to -1, +2 to +16) 007FH 0080H 07FFH 0800H 0FFFH 1000H BRCB !caddr Instruction Branch Address 1FFFH 2000H 2FFFH 3000H BRCB !caddr Instruction Branch Address 3F7FH BRCB !caddr Instruction Branch Address 14 PD75P336 Remarks In addition to the above, branching is possible with the BR PCDE and BR PCXA instructions to addresses with the low-order 8 bits only of the PC modified. 2.2 DATA MEMORY (RAM) .......768 WORDS x 4 BITS The configuration of the data memory is shown in Fig. 2-2. The data memory comprises a data area and peripheral hardware area, the data area comprises 768 x 4-bit static RAM. Fig. 2-2 Data Memory Map Data Memory General Register Area Stack Area 000H 01FH 020H (32 x 4) Memory Bank 0 0FFH 100H 256 x 4 Data Area Static RAM 768 x 4 Display Data Memory Area Memory Bank 1 1EBH 1ECH 1FFH 200H 256 x 4 (20 x 4) Memory Bank 2 2FFH Not On-Chip 256 x 4 F80H Peripheral Hardware Area FFFH Memory Bank 15 128 x 4 15 PD75P336 3. INSTRUCTION SET AND INSTRUCTION OPERATIONS (1) Operand identifier and description Operand identifiers and description method operands are written in the operand column for each instruction in accordance with the description method for the operand identifier for that instruction (refer to "RA75X Assembler Package User's Manual Language Volume (EEU-730)" for details). Where multiple items are included in the description method, one of those elements should be selected. Uppercase letters and the symbols + and - are keywords and should be written as they are. In the case of immediate data, an appropriate number or label is written. Descriptor reg reg1 rp rp1 rp2 rp' rp'1 rpa rpa1 n4 n8 mem bit fmem pmem addr caddr faddr taddr PORTn IExxx RBn MBn * Description Method X, A, B, C, D, E, H, L X, B, C, D, E, H, L XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE' HL' BC, DE, HL, XA', BC', DE', HL' HL, HL+, HL-, DE, DL DE, DL 4-bit immediate date or label 8-bit immediate date or label 8-bit immediate date or label* 2-bit immediate date or label FB0H to FBFH, FF0H to FFFH immediate data or label FC0H to FFFH immediate data or label 0000H to 3F7FH immediate data or label 12-bit immediate date or label 11-bit immediate date or label 20H to 7FH immediate date (bit 0 = 0) or label PORT0 to PORT8 IEBT, IECSI, IET0, IET1, IE0 to IE2, IE4, IEW RB0 to RB3 MB0, MB1, MB2, MB15 In 8-bit data processing, only an even address can be specified. 16 PD75P336 (2) Operation description legend A : A register; 4-bit accumulator B : B register; 4-bit accumulator C D E H L X XA BC DE HL XA' BC' DE' HL' PC SP CY PSW MBE RBE PORTn IME IPS IExxx RBS MBS PCC . (xx) xxH : : : : : : : : : : : : : : : : : : : : : : : : : : : : C register; 4-bit accumulator D register; 4-bit accumulator E register; 4-bit accumulator H register; 4-bit accumulator L register; 4-bit accumulator X register; 4-bit accumulator Register pair (XA); 8-bit accumulator Register pair (BC); 8-bit accumulator Register pair (DE); 8-bit accumulator Register pair (HL); 8-bit accumulator Extended register pair (XA') Extended register pair (BC') Extended register pair (DE') Extended register pair (HL') Program counter Stack pointer Carry flag; bit accumulator Program status word Memory bank enable flag Register bank enable flag Portn (n = 0 to 8) Interrupt master enable flag Interrupt priority selection register Interrupt enable flag Register bank selection register Memory bank selection register Processor clock control register Address, bit delimiter : Contents addressed by xx : Hexadecimal data 17 PD75P336 (3) Description of addressing area field symbols *1 *2 MB = MBE * MBS MB = 0 MBS = 0, 1, 2, 15 *3 MBE = 0 : MB = 0 (000H to 07FH) MB = 15 (F80H to FFFH) MBE = 1 : MB = MBS (MBS = 0, 1, 2, 15) MB = 15, fmem = FB0H to FBFH, FF0H to FFFH MB = 15, pmem = FC0H to FFFH addr = 0000H to 3F7FH addr = (Current PC) -15 to (Current PC) -1 (Current PC) + 2 to (Current PC) + 16 caddr = 0000H to 0FFFH (PC13,12 = 00B) or 1000H to 1FFFH (PC13,12 = 01B) or 2000H to 2FFFH (PC13,12 = 10B) or 3000H to 3FFFH (PC13,12 = 11B) faddr = 0000H to 07FFH taddr = 0020H to 007FH Data Memory Addressing *4 *5 *6 *7 *8 Program Memory Addressing *9 *10 Remarks 1. 2. 3. 4. MB indicates the accessible memory bank. MB=0 irrespective of MBE and MBS in *2. MB=15 irrespective of MBE and MBS in *4 and *5. *6 to *10 indicate accessible area. (4) Explanation of machine cycle column "S" indicates the number of machine cycles required when an instruction with a skip function performs a skip operation. The value of "s" is as follows: * When a skip is not performed ....................................................................................................................... S = 0 * When the skipped instruction is a 1-byte or 2-byte instruction ................................................................ S = 1 * When the skipped instruction is a 3-byte instruction (BR !addr or CALL !addr) ................................... S = 2 Note A GETI instruction is skipped in one machine cycle. any of four times can be One machine cycle is equivalent to one cycle (=tCY)of the CPU clock cycle : selected according to the PCC setting. 18 PD75P336 Mnemonic Machine Cycles Note 1 Bytes Operand Operation A n4 reg1 n4 XA n8 HL n8 rp2 n8 A (HL) A (HL), then L L + 1 A (HL), then L L - 1 A (rpa1) XA (HL) (HL) A (HL) XA A (mem) XA (mem) (mem) A (mem) XA A reg XA rp' reg1 A rp'1 XA A (HL) A (HL), then L L + 1 A (HL), then L L -1 A (rpa1) XA (HL) A (mem) XA (mem) A reg1 XA rp' XA (PC13-8 + DE)ROM XA (PC13-8 + XA)ROM Addressing Area Skip Condition Stack A A, #n4 reg1, #n4 XA, #n8 HL, #n8 rp2, #n8 A, @HL A, @HL+ A, @HL- A, @rpa1 XA, @HL MOV @HL, A Transfer @HL, XA A, mem XA, mem mem, A mem, XA A, reg XA, rp' reg1, A rp'1, XA A, @HL A, @HL+ A, @HL- A, @rpa1 XCH XA, @HL A, mem XA, mem A,reg1 XA, rp' Note 2 XA, @PCDE MOVT XA, @PCXA 1 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 1 2 1 1 1 2 2 2 2 1 2+S 2+S 1 2 1 2 2 2 2 2 2 2 2 2 1 2+S 2+S 1 2 2 2 1 2 3 3 Stack A Stack B *1 *1 *1 *2 *1 *1 *1 *3 *3 *3 *3 L=0 L = FH *1 *1 *1 *2 *1 *3 *3 L=0 L = FH Note 1. 2. Instruction Group Table reference 19 PD75P336 Mnemonic Machine Cycles Note Bytes Operand CY, fmem.bit Operation CY (fmem.bit) CY (pmem7-2 + L3-2.bit (L1-0)) CY (H + mem3-0.bit) (fmem.bit) CY (pmem7-2 + L3-2.bit (L1-0)) CY (H + mem3-0.bit) CY A A + n4 XA XA + n8 A A + (HL) XA XA + rp' rp'1 rp'1 + XA A, CY A + (HL) + CY XA, CY XA + rp' + CY rp'1, CY rp'1 + XA + CY A A - (HL) XA XA - rp' rp'1 rp'1 - XA A , CY A - (HL) - CY XA, CY XA - rp' - CY rp'1, CY rp'1 - XA - CY AA AA Addressing Area *4 *5 *1 *4 *5 *1 Skip Condition 2 2 2 2 2 2 2 2 2 2 2 1+S 2+S 1+S 2+S 2+S 1 2 2 1+S 2+S 2+S 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 Bit transfer CY, pmem.@L MOV1 CY, @H + mem.bit fmem.bit, CY pmem.@L, CY @H + mem.bit, CY 2 A, #n4 XA, #n8 ADDS A, @HL XA, rp' rp'1, XA A, @HL ADDC XA, rp' rp'1, XA A, @HL SUBS Operation XA, rp' rp'1, XA A, @HL SBUC XA, rp' rp'1, XA A, #n4 AND A, @HL XA, rp' rp'1, XA A, #n4 OR A, @HL XA, rp' rp'1, XA A, #n4 XOR A, @HL XA, rp' rp'1, XA 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 carry carry *1 carry carry carry *1 *1 borrow borrow borrow *1 n4 (HL) rp' XA *1 *1 XA XA rp'1 rp'1 AA AA n4 (HL) rp' XA *1 XA XA rp'1 rp'1 AA AA n4 (HL) rp' XA XA XA rp'1 rp'1 Note Instruction Group 20 PD75P336 Mnemonic RORC NOT A A reg INCS rp1 Machine Cycles Note 1 Bytes Operand Operation CY A0, A3 CY, An-1 An AA reg reg + 1 rp1 rp1 + 1 (HL) (HL) + 1 (mem) (mem) + 1 reg reg - 1 rp' rp' - 1 Skip if reg = n4 Skip if (HL) = n4 Skip if A = (HL) Skip if XA = (HL) Skip if A = reg Skip if XA = rp' CY 1 CY 0 Skip if CY = 1 CY CY Addressing Area Skip Condition Note 2 1 2 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 1 1 2 1+S 1+S 2+S 2+S 1+S 2+S 2+S 2+S 1+S 2+S 2+S 2+S 1 1 1+S 1 reg = 0 rp1 = 00H *1 *3 (HL) = 0 (mem) = 0 reg = FH rp' = FFH reg = n4 *1 *1 *1 (HL) = n4 A = (HL) XA = (HL) A = reg XA = rp' Note 3 @HL mem reg DECS rp' reg, #n4 Comparison @HL, #n4 SKE A, @HL XA, @HL A, reg XA, rp' SET1 CY CY CY CY Note 4 CLR1 SKT NOT1 CY = 1 Note 1. 2. 3. 4. Instruction Group Accumulator operation Increment and decrement Carry flag manipulation 21 PD75P336 Machine Cycles Bytes Note Mnemonic Operand Operation Addressing Area *3 *4 *5 *1 *3 *4 *5 *1 *3 *4 *5 *1 *3 *4 *5 *1 *4 *5 *1 *4 *5 *1 *4 *5 *1 *4 *5 *1 Skip Condition mem.bit SET1 fmem.bit pmem.@L @H + mem.bit mem.bit CLR1 fmem.bit pmem.@L @H + mem.bit mem.bit SKT Memory bit manipulation fmem.bit pmem.@L @H + mem.bit mem.bit SKF fmem.bit pmem.@L @H + mem.bit fmem.bit SKTCLR pmem.@L @H+mem.bit CY, fmem.bit AND1 CY, pmem.@L CY, @H + mem.bit 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2+S 2 2 2 2 2 2 2 2 2 (mem.bit) 1 (fmem.bit) 1 (pmem7-2 + L3-2.bit (L1-0)) 1 (H + mem3-0.bit) 1 (mem.bit) 0 (fmem.bit) 0 (pmem7-2 + L3-2.bit (L1-0)) 0 (H + mem3-0.bit) 0 Skip if (mem.bit) = 1 Skip if (fmem.bit) = 1 Skip if (pmem7-2 + L3-2.bit (L1-0)) = 1 Skip if (H + mem3-0.bit) = 1 Skip if (mem.bit) = 0 Skip if (fmem.bit) = 0 Skip if (pmem7-2 + L3-2.bit (L1-0))= 0 Skip if (H + mem3-0.bit) = 0 Skip if (fmem.bit) = 1 and clear Skip if (pmem7-2 + L3-2.bit (L1-0)) = 1 and clear Skip if (H + mem3-0.bit) = 1 and clear CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY CY (mem.bit) = 1 (fmem.bit) = 1 (pmem.@L) = 1 (@H + mem.bit) = 1 (mem.bit) = 0 (fmem.bit) = 0 (pmem.@L) = 0 (@H + mem.bit) = 0 (fmem.bit) = 1 (pmem.@L) = 1 (@H + mem.bit) = 1 (fmem.bit) (pmem7-2 + L3-2.bit (L1-0)) (H + mem3-0.bit) (fmem.bit) (pmem7-2 + L3-2.bit (L1-0)) (H + mem3-0.bit) (fmem.bit) (pmem7-2 + L3-2.bit (L1-0)) (H + mem3-0.bit) CY, fmem.bit OR1 CY, pmem.@L CY, @H + mem.bit CY, fmem.bit XOR1 CY, pmem.@L CY, @H + mem.bit BR addr -- -- PC13-0 addr (The assembler selects the optimum instruction from among the BRCB !caddr, and BR $addr instructions.) PC13-0 addr PC13-0 PC 13.12 *6 Branch BR BRCB BR BR !addr !caddr $addr PCDE PCXA 3 2 1 2 2 3 2 2 3 3 *6 + caddr11-0 *8 *7 + DE + XA PC13-0 addr PC13-0 PC PC13-0 PC 13-8 13-8 Note Instruction Group 22 PD75P336 Machine Cycles Note 1 Bytes Mnemonic Operand Operation Addressing Area Skip Condition CALL !addr 3 3 (SP - 4) (SP - 1) (SP - 2) PC11-0 (SP - 3) MBE, RBE, PC13.12 PC13-0 addr, SP SP - 4 (SP - 4) (SP - 1) (SP - 2) PC11-0 (SP - 3) MBE, RBE, PC13.12 PC13-0 000 + faddr, SP SP - 4 MBE, RBE, PC13.12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 4 MBE, RBE, PC13.12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) SP SP + 4 the skip unconditionally x, x, PC13.12 (SP + 1) PC11-0 (SP) (SP + 3) (SP + 2) PSW (SP + 4) (SP + 5), SP SP + 6 (SP - 1) (SP - 2) rp, SP SP - 2 (SP - 1) MBS, (SP - 2) RBS, SP SP - 2 rp (SP + 1) (SP), SP SP + 2 MBS (SP + 1), RBS (SP), SP SP + 2 IME (IPS.3) 1 IE x x x 1 IME (IPS.3) 0 IE x x x 0 A PORTn (n = 0-8) (n = 4, 6) (n = 2-8) (n =4, 6) *6 CALLF !faddr 2 2 *9 Subroutine stack control RET 1 3 RETS 1 3+S Unconditional RETI 1 3 PUSH rp BS 1 2 1 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 POP rp BS EI Note 2 IEx x x 2 2 DI IEx x x A, PORTn XA, PORTn 2 2 2 2 2 2 2 1 Input/Output IN*1 XA PORTn+1, PORTn PORTn A PORTn+1, PORTn XA Set HALT Mode (PCC.2 1) Set STOP Mode (PCC.3 1) No Operation RBS n MBS n OUT*1 HALT STOP NOP SEL PORTn, A PORTn, XA *10 Note 3 RBn MBn 2 2 (n = 0-3) (n = 0,1,2,15) GETI*2 taddr 1 3 * TBR Instruction PC13-0 (taddr) 5-0 + (taddr + 1) ----------------------------------------------------------------------* TCALL Instruction (SP - 4) (SP - 1) (SP - 2) PC11-0 (SP - 3) MBE, RBE, PC13, 12 PC13-0 (taddr) 5-0 (taddr + 1) SP SP - 4 ----------------------------------------------------------------------* Other than TBR and TCALL Instruction Execution of an instruction addressed at (taddr) and (taddr + 1) ----------------------------- Special ----------------------------Conforms to referenced instruction. 23 PD75P336 * 1. At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance. 2. TBR and TCALL instructions are assembler pseudo-instructions for table definition. Note 1. Instruction Group 2. Interruput control 3. CPU control 24 PD75P336 4. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY OPERATIONS The program memory incorporated in the PD75P336 is 32640 x 8-bit electrically writable one-time PROM. Write/verify operations on this one-time PROM are executed using the pins shown in the table below. Address updating is performed by means of clock input from the X1 pin rather than by address input. Pin Name VPP Function Voltage applecation pin for program memory write/verify (normally VDD potential). Address update clock inputs for program memory write/verify. Inverse of X1 pin signal is input to X2 pin. Operating mode selection pin for program memory write/verify. 8-bit data input/output pins for progrm memory write/verify. Supply voltage application pin. Applies 2.7 to 6.0 V in normal operation, and 6 V for program memory write/verify. X1, X2 MD0 to MD3 P40 to P43 (low-order 4 bits) P50 to P53 (high-order 4 bits) VDD Note 1. Pins not used in a program memory write/verify operation are handled as follows: * Pins other than XT2 .......... Connect to VSS with a pull-down resistor * XT2 pins ............................. Leave open 2. Since the PD75P336 is not provided with an erase window, program memory contents cannot be erased with ultra-violet light. 4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES When +6 V is applied to the VDD pin and +12.5 V to the VPP pin, the PD75P336 enters the program memory write/ verify mode. This mode comprises one of the operating modes shown below according to the setting of pins MD0 to MD3. Operating Mode Setting Operating Mode VPP VDD MD0 H L +12.5 V +6V L H L X H H H H Verify mode Program inhibit mode MD1 L H MD2 H H MD3 L H Program memory address zero-clear Write mode X: L or H 25 PD75P336 4.2 PROGRAM MEMORY WRITE PROCEDURE The procedure for writing to program memory is as shown below, allowing high-speed writing. (1) Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low. (2) 5 V is supplied to the VDD and VPP pins. (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 10 s wait. Program memory address zero-clear mode. 6 V is supplied to VDD, 12.5 V to VPP. Program inhibit mode. Data is written in 1 ms write mode. Program inhibit mode. Verify mode. If write is successful go to (10), otherwise repeat (7) to (9). (Number of times written in (7) to (9): X) x 1 ms additional writes. Program inhibit mode. Program memory address is updated (+1) by inputting 4 pulses to the X1 pin. Steps (7) to (12) are repeated until the last address. Program memory address zero-clear mode. (15) VDD / VPP pin voltage is changed to 5 V. (16) Power-off. Steps (2) to (12) of this procedure are shown in the figure below. Repeated X Times Write Verify Additional Write Address Increment VPP VPP VDD VDD + 1 VDD VDD X1 P40-P43 P50-P53 Data Input Data Output Data Input MD0 (P30) MD1 (P31) MD2 (P32) MD3 (P33) 26 PD75P336 4.3 PROGRAM MEMORY READ PROCEDURE PD75P336 program memory contents can be read using the following procedure. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Unused pins are connected to VSS with a pull-down resistor. The X1 pin is driven low. 5 V is supplied to the VDD and VPP pins. 10 s wait. Program memory address zero-clear mode. 6 V supplied to VDD, and 12.5 V to VPP. Program inhibit mode. Verify mode. When clock pulses are input to the X1 pin, data is output sequentially, one address per 4-pulse-input cycle. Program inhibit mode. Program memory address zero-clear mode. VDD / VPP pin voltage is changed to 5 V. Power-off. Steps (2) to (9) of this procedure are shown in the figure below. VPP VPP VDD VDD + 1 VDD VDD X1 MD0 (P30) MD1 (P31) MD2 (P32) MD3 (P33) P40-P43 P50-P53 Data Output Data Output 27 PD75P336 PD75P336 PD75304B 5. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 C) PARAMETER SYMBOL VDD Power supply voltage VPP VI1 VI2 Output voltage Output current high VO IOH 1 pin All pins 1 pin Output current low Peak value Effective value Peak value IOL* Total of ports 0, 2, 3, 5, 18 Effective value Peak value Effective value Except ports 4, 5 Ports 4, 5 Open-drain TEST CONDITIONS RATING -0.3 to +7.0 -0.3 to +13.5 -0.3 to VDD +0.3 -0.3 to +11 -0.3 to VDD +0.3 -15 -30 30 15 100 60 100 60 -40 to +85 -65 to +150 UNIT V V V V V mA mA mA mA mA mA mA mA C C 5 Input voltage Total of ports 4, 6, 7 Operating temperature Storage temperature Topt Tstg * Rms value is calculated from [effective value] = [peak value] x duty CAPACITANCE (Ta = 25 C, VDD = 0 V) PARAMETER Input capacitance Output capacitance I/O capacitance SYMBOL CIN COUT CIO f = 1 MHz Unmeasured pins returned to 0 V. TEST CONDITIONS MIN. TYP. MAX. 15 15 15 UNIT pF pF pF 28 PD75P336 PD75P336 PD75304B MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) ESONATOR RECOMMENDED CONSTANT PARAMETER Oscillator frequency (fx)*1 TEST CONDITIONS MIN. TYP. MAX. UNIT 1.0 After VDD reached the MIN. of the oscillator voltage range. 1.0 VDD = 4.5 to 6.0 V 4.19 5.0*3 MHz X1 X1 Ceramic resonator C1 C2 Oscillation stabilization time*2 4 ms VDD X1 X1 Oscillator frequency (fx)*1 5.0*3 MHz Crystal resonator C1 C2 Oscillation stabilization time*2 10 ms 30 ms VDD X1 X2 X1 input frequency (fx)*1 1.0 5.0*3 MHz External clock PD74HCU04 X1 input high-/low-level width (tXH, tXL) 100 500 ns * 1. Shows the oscillator characteristics only. For the instruction execution time, see the AC characteristics. 2. Time necessary for oscillation to stabilize after VDD applied or STOP mode released. 3. When the oscillator frequency is "4.19 MHz < fX 5.0 MHz", it is impossible to select of "PCC = 0011" with 1 machine cycle of less than 0.95 s as instruction execution time. 29 PD75P336 PD75P336 PD75304B SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) RECOMMENDED CONSTANT TEST CONDITIONS RESONATOR PARAMETER MIN. TYP. MAX. UNIT XT1 XT2 R Oscillator frequency (fXT) VDD = 4.5 to 6.0 V Oscillation stabilization time 32 32.768 35 kHz Crystal resonator C3 1.0 2 s C4 10 s VDD XT1 input frequency (fXT) XT1 XT2 Leave Open 32 100 kHz External clock XT1 input high-/ low-level width (tXTH,tXTL) 5 15 s Note When the main system clock and subsystem clock oscillation circuit are used, area inside doted lines in the figure should be wired as follows to prevent influence from the wiring capacitance, etc.. * Wiring should be as short as possible. * Do not cross other signal lines, and do not place the oscillator close to line in which varying high current flows. * Potential at the oscillator capacitor connecting point should always be the same as VDD. Do not connect to the power supply pattern in which high current flows. * Do not fetch signals from the oscillator. In the subsystem clock oscillator, which is designed to be a circuit with low amplification ratio to suppress consumption current, misoperation due to noise occurs more often than in the main system clock oscillator. Therefore, when using the subsystem clock, special care should be taken in the wiring method. 30 PD75P336 PD75P336 PD75304B DC CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) (1/3) PARAMETER SYMBOL VIH1 Input voltage high VIH2 VIH3 VIH4 VIL1 Input voltage low VIL2 VIL3 TEST CONDITIONS Ports 2, 3, 8 Ports 0, 1, 6, 7, RESET Ports 4 and 5 X1, X2, XT1 Ports 2, 3, 4, 5, 8 Ports 0, 1, 6, 7 RESET X1, X2, XT1 VDD = 4.5 to 6.0 V IOH = -1 mA IOH = -100 A VDD = 4.5 to 6.0 V IOH = -100 A IOH = -50 A Open-drain MIN. 0.7 VDD 0.8 VDD 0.7 VDD VDD -0.5 0 0 0 TYP. MAX. VDD VDD 10 VDD 0.3 VDD 0.2 VDD 0.4 UNIT V V V V V V V VOH1 Output voltage high VOH2 Ports 0, 2, 3, 6, 7, 8 BIAS VDD -1.0 V VDD -0.5 V BP0 to BP7 (IOH 2 outputs) VDD -2.0 V VDD -1.0 V 31 PD75P336 PD75P336 PD75304B DC CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) (2/3) PARAMETER SYMBOL TEST CONDITIONS Ports 3, 4, 5 VDD = 4.5 to 6.0 V IOL = 15 mA Ports 0, 2, 3, 4, 5, 6 7, 8 VDD = 4.5 to 6.0 V IOL = 1.6 mA IOL = 400 A Open-drain pull-up MIN. TYP. MAX. UNIT 0.4 2.0 V VOL1 Output voltage low 0.4 V 0.5 V SB0, 1 resistor 1 k 0.2 VDD V VOL2 BP0 to BP7 (IOL 2 outputs) VDD = 4.5 to 6.0 V IOL = 100 A IOL = 50 A Other than below 1.0 V 1.0 3 20 V ILIH1 VIN = VDD Input leakage current high ILIH2 VIN = 10 V A A A X1, X2, XT1 Ports 4, 5 (when opendrain) Other than below VIN = 0 V X1, X2, XT1 Other than below Ports 4 and 5 (when opendrain) ILIH3 20 Input leakage current low ILIL1 ILIL2 ILOH1 VOUT = VDD -3 -20 3 A A A Output leakage current high ILOH2 VOUT = 10 V 20 A Output leakage current low ILOL VOUT = 0 V VDD = 5.0 V 10% VDD = 3.0 V 10% -3 A Built-in Pull-up resistor RL1 Ports 0, 1, 2, 3, 6 7, 8 (Except P00) VIN = 0 V 15 40 80 k 30 300 k LCD drive voltage VLCD 2.5 VDD V 32 PD75P336 PD75P336 PD75304B DC CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) (3/3) PARAMETER LCD output voltage deviation*1 (common) LCD output voltage deviation*1 (segment) SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT VODC IO = 5 A VODS IO = 1 A VLCD0 = VLCD VLCD1 = VLCD x 2/3 VLCD2 = VLCD x 1/3 2.7 V VLCD VDD 0 0.2V V 0 0.2V V VDD = 5 V 10 %*4 IDD1 4.19 MHz crystal oscillation C1= C2 = 22 pF*3 IDD2 VDD = 3 V 10 %*5 VDD = 5V 10 % VDD = 3V 10 % 5 15 mA 1 3 mA 500 1500 A HALT mode 300 900 Power supply current *2 IDD3 32 kHz crystal oscillation*6 A Operat- VDD = 3V ing 10 % mode HALT mode VDD = 3V 10 % 100 300 A IDD4 20 60 A VDD = 5 V 10 % XT1 = 0 V STOP mode IDD5 VDD = 3V 10 % Ta = 25 C 0.5 20 A 0.1 10 A A 0.1 5 * 1. The voltage deviation means a difference between the ideal value of segment or common output (VLCDn; n = 0, 1, 2) and the output voltage. 2. Current flowing in the built-in pull-up resistor and the LCD split resistor is not include. 3. Including the case where the subsystem clock is operating. 4. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode. 5. When PCC is set to 0000 and operated in the low-speed mode. 6. The case where the system clock control register (SCC) is set to 1001, the main system clock oscillatio stopped and the device is operated on the subsystem clock. 33 PD75P336 PD75P336 PD75304B A/D CONVERTER CHARACTERISTICS PARAMETER Resolution -10 Ta + 85 oC -40 Ta < -10 oC -10 Ta + 85 oC SYMBOL (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V, AVSS = VSS = 0 V) TEST CONDITION MIN. 8 TYP. 8 MAX. 8 1.5 UNIT bit 2.5 V AVREF VDD AVREF 0.6 VDD 2.0 Absolute accuracy*1 2.5 V AVREF VDD AVREF < 0.6 VDD tCY 1.91 s -40 Ta - 10 oC 1.5 LSB 2.0 -40 tCY < 1.91 s Ta + 85 oC Conversion time Sampling time Analog input voltage Analog input impedance AVREF current tCONV tSAMP VIAN *2 *3 AVSS 3.0 168/fx 44x AVREF s s V RAN IREF 1000 1.0 2.0 M mA * 1. Absolute accuracy excluding quantization (1/2LSB) error. 2. Time up to end of conversion (EOC = 1) after execution of the conversion start instruction. (40.1 s: fx = 4.19 MHz operation) 3. Time up to end of sampling after execution of the conversion start instruction. (10.5 s: fx = 4.19 MHz operation) 34 PD75P336 PD75P336 PD75304B AC CHARACTERISTICS (Ta = -40 to +85 C, VDD = 2.7 to 6.0 V) PARAMETER SYMBOL TEST CONDITIONS Operated by main system clock Operated by subsystem clock fTI VDD = 4.5 to 6.0 V VDD = 4.5 to 6.0 V MIN. 0.95 TYP. MAX. 64 UNIT s s s CPU clock cycle time (minimum instruction execution time = 1 machine cycle)*1 tCY 3.8 64 114 122 125 TI0, 1 input frequency 0 0 1 275 MHz kHz TI0, 1 input high/ low level width tTIH, tTIL VDD = 4.5 to 6.0 V 0.48 1.8 s s s s s s INT0 Interrupt input high/ low level width tINTH, INT1, 2, 4 tINTL KR0 to KR7 RESET low level width tRSL *2 10 10 10 * 1. The CPU clock () cycle time is determined by the oscillator frequency of the connected resonator and the system clock control register (SCC) and the processor clock control register (PCC). The figure below shows the main system clock operation power supply voltage VDD vs cycle time tCY characteristics. Becomes 2tCY or 128/fX depending on the interrupt mode register (IM0) setting. 70 64 30 6 5 4 tcy vs VDD (Operating on Main System Clock) Operating Guaranteed Range 2. Cycle Time tcy [ s] 3 2 1 0.5 0 1 2 3 4 5 6 Supply Voltage VDD [V] 35 PD75P336 PD75P336 PD75304B SERIAL TRANSFER OPERATION 2-wired and 3-wired serial I/O modes (SCK ... Internal clock output) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V SCK cycle time tKCY1 3800 VDD = 4.5 to 6.0 V tKCY1 /2-50 tKCY1 /2-150 150 ns ns MIN. 1600 TYP. MAX. UNIT ns tKL1 SCK high/low level width tKH1 ns SI setup time (to SCK) SI hold time (from SCK) SO output delay time from SCK tSIK1 ns tKSI1 VDD = 4.5 to 6.0 V 400 ns tKSO1 RL = 1 k , CL = 100 pF* 250 1000 ns ns 2-wired and 3-wired serial I/O modes (SCK ... External clock input) PARAMETER SYMBOL TEST CONDITIONS VDD = 4.5 to 6.0 V SCK cycle time tKCY2 3200 SCK high/low level width SI setup time (to SCK) SI hold time (from SCK ) SO output delay time from SCK tKL2 tKH2 tSIK2 VDD = 4.5 to 6.0 V 400 1600 100 ns ns ns ns MIN. 800 TYP. MAX. UNIT ns tKSI2 VDD = 4.5 to 6.0 V 400 300 1000 ns ns ns tKSO2 RL = 1 k, CL = 100 pF* * RL and CL are the SO output line load resistance and load capacitance, respectively. 36 PD75P336 PD75P336 PD75304B SBI mode (SCK ... Internal clock output (master)) PARAMETER SYMBOL UNIT ns ns ns TEST CONDITIONS VDD = 4.5 to 6.0 V MIN. 1600 3800 TYP. MAX. SCK cycle time tKCY3 tKL3 SCK high/low level width tKH3 VDD = 4.5 to 6.0 V tKCY3 /2-50 tKCY3 /2-150 150 ns SB0,1 setup time (to SCK) SB0,1 hold time (from SCK) SB0,1 output delay time from SCK SB0,1 from SCK tSIK3 ns tKSI3 tKCY3/2 VDD = 4.5 to 6.0 V ns tKSO3 RL = 1 k , CL = 100 pF* 0 0 250 1000 ns ns tKSB tKCY3 ns SCK from SB0, 1 tSBK tKCY3 ns SB0,1 low level width SB0,1 high level width tSBL tKCY3 ns tSBH tKCY3 ns * RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively. 37 PD75P336 PD75P336 PD75304B SBI mode (SCK ... External clock input (slave)) PARAMETER SYMBOL UNIT ns ns ns TEST CONDITIONS VDD = 4.5 to 6.0 V MIN. 800 3200 TYP. MAX. SCK cycle time tKCY4 tKL4 SCK high/low level width tKH4 VDD = 4.5 to 6.0 V 400 1600 ns SB0,1 setup time (to SCK) SB0,1 hold time (from SCK) SB0,1 output delay time from SCK SB0,1 from SCK tSIK4 100 ns tKSI4 tKCY4/2 ns tKSO4 RL = 1 k , CL = 100 pF* VDD = 4.5 to 6.0 V 0 0 300 1000 ns ns tKSB tKCY4 ns SCK from SB0, 1 tSBK tKCY4 ns SB0,1 low level width SB0,1 high level width tSBL tKCY4 ns tSBH tKCY4 ns * RL and CL are the SB0 and SB1 output line load resistance and load capacitance, respectively. 38 PD75P336 PD75P336 PD75304B AC Timing Test Point(Exculuding X1 and XT1 Inputs) 0.8 VDD 0.2 VDD Test Points 0.8 VDD 0.2 VDD Clock Timings 1/fX tXL tXH X1 Input VDD -0.5 V 0.4 V 1/fXT tXTL tXTH XT1 Input VDD -0.5 V 0.4 V TI0 Timing 1/fTI tTIL tTIH TI0 39 PD75P336 PD75P336 PD75304B Serial Transfer Timing 3-wired serial I/O mode: tKCY1 tKL1 tKH1 SCK tSIK1 tKSI1 SI tKSO1 Input Data SO Output Data 2-wired serial I/O mode: tKCY2 tKL2 tKH2 SCK tSIK2 tKSI2 SB0,1 tKSO2 40 PD75P336 PD75P336 PD75304B Serial Transfer Timing Bus release signal transfer: tKCY3,4 tKH3,4 tKL3,4 SCK tSIK3,4 tKSB tSBL tSBH tSBK tKSI3,4 SB0,1 tKSO3,4 Command signal transfer: tKL3,4 tKCY3,4 tKH3,4 SCK tSIK3,4 tKSB tSBK tKSI3,4 SB0,1 tKSO3,4 Interrupt Input Timing tINTL tINTH INT0,1,2,4 KR0-7 RESET Input Timing tRSL RESET 41 PD75P336 PD75P336 PD75304B DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DAT RETENTION CHARACTERISTICS (Ta = -40 to 85 C) PARAMETER Data retention supply voltage Data retention supply current*1 Release signal set time Oscillation stabilization wait time*2 SYMBOL VDDDR TEST CONDITIONS MIN. 2.0 TYP. MAX. 6.0 UNIT V IDDDR VDDDR = 2.0 V 0.1 10 A s tSREL Release by RESET Release by interrupt request 0 217/fx *3 tWAIT ms ms * 1. Current flng in the built-in pull-up resistor is not included. 2. The oscillation stabilization wait time is the time CPU operation is stopped to prevent unstable operation at start of oscillation. 3. Depends on the basic interval timer mode register (BTM) setting (table below). BTM3 -- -- -- -- BTM2 0 0 1 1 BTM1 0 1 0 1 BTM0 0 1 1 1 Waite Time (Figures in parentheses are for operation at fxx = 4.19 MHz) 220/fxx (approx. 250 ms) 217/fxx (approx. 31.3 ms) 215/fxx (approx. 7.82 ms) 213/fxx (approx. 1.95 ms) 42 PD75P336 PD75P336 PD75304B Data Retention Timing (STOP Mode Release by RESET) Internal Reset Operation HALT Mode STOP Mode Data Retention Mode Operating Mode VDD VDDDR STOP Instruction Execution tSREL RESET tWAIT Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal) HALT Mode STOP Mode Data Retention Mode Operating Mode VDD VDDDR STOP Instruction Execution tSREL Standby Release Signal (Interrupt Request) tWAIT 43 PD75P336 PD75P336 PD75304B D/C PROGRAMING CHARACTERISTICS (Ta = 25 5 C, VDD = 6.0 0.25 V, VPP = 12.5 0.3 V, VSS = 0 V) PARAMETER Input voltage high SYMBOL VIH1 VIH2 VIL1 VIL2 VL1 TEST CONDITION Except X1, X2 X1, X2 Except X1, X2 X1, X2 VIN = VIL or VIH IOH = -1 mA IOL = 1.6 mA MIN. 0.7VDD VDD -0.5 0 0 TYP. MAX. VDD VDD 0.3VDD 0.4 10 VDD -1.0 0.4 30 MD0 = VIL , MD1 = VIH 30 UNIT V V V V Input voltage low Input leakage current Output voltage high Output voltage low VDD power supply current VPP power supply current A VOH VOL IDD IPP V V mA mA * 1. 2. VPP must not exceed +13.5 V including overshoot. VDD should be applied before VPP and cut after VPP. A/D PROGRAMING CHARACTERISTICS (Ta = 25 5 C, VDD = 6.0 0.25 V, VPP = 12.5 0.3 V, VSS = 0 V) (1/2) PARAMETER Address setup time *2 (to MD0) MD1 setup time (to MD0) Data setup time (to MD0) Address hold time *2 (from MD0) Data hold time (from MD0) Data output float delay time from MD0 VPP setup time (to MD3) VDD setup time (to MD3) Initial program pulse width SYMBOL tAS *1 tAS TEST CONDITION MIN. 2 TYP. MAX. UNIT s s tMIS tOES 2 tDS tDS 2 s tAH tAH 2 s tDH tDH 2 s tDF tDF 0 130 s tVPS tVPS 2 s s tVDS tVCS 2 tPW tPW 0.95 1.0 1.05 ms * 1. Symbol of the corresponding PD27C256. 2. The internal address signal is incremented (+1) at the rising edge of the forth X1 input. The signal is not connected to pins. 44 PD75P336 PD75P336 PD75304B A/D PROGRAMING CHARACTERISTICS (Ta = 25 5 C, VDD = 6.0 0.25 V, VPP = 12.5 0.3 V, VSS = 0 V) (2/2) PARAMETER Additional program pulse width MD0 setup time (to MD1) Data output delay time from MD0 MD1 hold time (from MD0) MD1 recover time (from MD0) Program conuter reset time X1 input high/low width X1 input frequency SYMBOL tOPW *1 tOPW TEST CONDITION MIN. 0.95 TYP. MAX. 21.0 UNIT ms tMOS tCES 2 s tDV tDV MD0 = MD1 = VIL 1 s tM1H tOEH tM1H + tM1R 50 s 2 s tM1R tOR 2 s tPCR 10 s tXH, tXL 0.125 s fx 4.19 MHz Initial mode set time MD3 setup time (to MD1) MD3 hold time (to MD1) MD3 setup time (to MD0 ) Data output delay time from address *2 Data output hold time from address *2 MD3 hold time (from MD0) Data output float delay time from MD3 tI 2 2 s s tM3S tM3H 2 s tM3SR Program memory read 2 s tDAD tACC Program memory read Program memory read 0 2 130 s s s s tHAD tOH tM3HR Program memory read Program memory read 2 2 tDFR * 1. Symbol of the corresponding PD27C256. 2. The internal address signal is incremented (+1) at the rising edge of the fourth X1 input. The signal is not connected to pins. 45 PD75P336 PD75P336 PD75304B Program Memory Write Timing mode: tVPS VPP VPP VDD VDD + 1 VDD VDD tVDS tXH X1 P40-P43 P50-P53 tI MD0 tPW MD1 tPCR MD2 tM3S tM1R tM0S Data Input tDS tOH Data Output tXL Data Input tDS tDH tAH tAS Data Input tOPW tM3H MD3 Program Memory Read Timing mode: tVPS VPP VDD tVDS VDD + 1 VDD tXH VDD tXL tHAD P40-P43 P50-P53 tI MD0 tDV Data Output tDAD Data Output X1 VPP tDFR tM3HR tPCR MD2 tM3SR MD3 46 MD1 tM1S tM1H tDV tDF PD75P336 6. PACKAGE INFORMATION 5 80 PIN PLASTIC QFP ( 14) A B 60 61 41 40 detail of lead end D C S 80 1 21 20 F G H IM J K P N L S80GC-65-3B9-3 NOTE Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition. ITEM A B C D F G H I J K L M N P Q S MILLIMETERS 17.2 0.4 14.0 0.2 14.0 0.2 17.2 0.4 0.8 0.8 0.30 0.10 0.13 0.65 (T.P.) 1.6 0.2 0.8 0.2 0.15+0.10 -0.05 0.10 2.7 0.1 0.1 3.0 MAX. M INCHES 0.677 0.016 0.551+0.009 -0.008 0.551+0.009 -0.008 0.677 0.016 0.031 0.031 0.012+0.004 -0.005 0.005 0.026 (T.P.) 0.063 0.008 0.031+0.009 -0.008 0.006+0.004 -0.003 0.004 0.106 0.004 0.004 0.119 MAX. 55 Q 47 PD75P336 80 PIN PLASTIC TQFP (FINE PITCH) ( A B 12) 60 61 41 40 detail of lead end C D S Q 80 21 1 20 F G H I M J K P N L NOTE Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS A B C D F G H I J K L M N P Q R S 14.00.2 12.00.2 12.00.2 14.00.2 1.25 1.25 0.22 +0.05 -0.04 0.10 0.5 (T.P.) 1.00.2 0.50.2 INCHES 0.551 +0.009 -0.008 0.472 +0.009 -0.008 0.472 +0.009 -0.008 0.551 +0.009 -0.008 0.049 0.049 0.0090.002 0.004 0.020 (T.P.) 0.039 +0.009 -0.008 0.020 +0.008 -0.009 M 0.145 +0.055 0.0060.002 -0.045 0.10 1.05 0.050.05 55 1.27 MAX. 0.004 0.041 0.0020.002 55 0.050 MAX. P80GK-50-BE9-4 48 R PD75P336 7. RECOMMENDED SOLDERING CONDITIONS This product should be soldered and mounted under the conditions in the table below. For detail of recommended soldering conditions, refer to the information document "Surface Mount Technology Manual" (IEI-1207). For soldering methods and conditions other than those recommended below, contact our salesman. Table 7-1 Soldering Conditions (1) PD75P336GC-3B9 : 80-pin plastic QFP ( 14mm) Recommended Condition Symbol 5 Solderring Method Solderring Conditions Solder bath temperature: 260 C. max., Duration: 10 sec. max., Number of times: Once, Time limit: 2 days* (thereafter 20 hours prebaking required at 125 C) Preheat temperature: 120 C max. (package surface temperature) Package Peak temperature: 230 C, Duration: 30 sec. max., (at 210 C or above), Number of times: Once, Time limit: 2 days* (thereafter 20 hours prebaking required at 125 C) Package Peak temperature: 215 C, Duration: 40 sec. max., (at 200 C or above), Number of times: Once, Time limit: 2 days* (thereafter 20 hours prebaking required at 125 C) Pin part temperature: 300 C or below, Duration: 3 sec. max. (per device side) Wave soldering WS60-202-1 Infrared reflow IR30-202-1 VPS reflow VP15-202-1 Pin part heating (2) PD75P336GK-BE9 : 80-pin plastic TQFP (fine pitch) ( 12mm) Recommended Condition Symbol Solderring Method Solderring Conditions Package Peak temperature: 235 C, Duration: 30 sec. max., (at 210 C or above), Number of times: Once, Time limit: 1 day* (thereafter 10 hours prebaking required at 125 C) Package Peak temperature: 215 C, Duration: 40 sec. max., (at 200 C or above), Number of times: Once, Time limit: 1 day* (thereafter 10 hours prebaking required at 125 C) Pin part temperature: 300 C or below, Duration: 3 sec. max. (per device side) Infrared reflow IR35-101-1 VPS reflow VP15-101-1 Pin part heating * For the storage period after dry-pack decapsulation, storage conditions are max. 25 C, 65 % RH. Use of more than one soldering method should be avoided (except in the case of pin part heating). Note 49 PD75P336 PD75P336 PD75304B PD75304B APPENDIX A. LIST OF FUNCTIONS Name Item CPU core ROM (bytes) RAM ( x 4 bits) General registers Main system clock Subsystem clock CMOS input CMOS input/output Input/ output ports CMOS output N-ch open-drain input/output LCD controller/driver 44 8 Internal pull-up resistor specifiable by software 20 8 Dual function as segment pins Same as at left (but no pull-up resistor) 8 (10 V, withstand voltage mask option pull-up capability) PD75336 75X-High End 16256 (mask ROM) 768 PD75P336 PD75328 75X-Standard 8064 (mask ROM) 512 4 bits x 8 x 1 bank 0.95 s, 1.91 s, 15.3 s (at 4.19 MHz operation) 16256 (PROM) 4 bits x 8 x 4 banks 0.95 s, 1.91 s, 3.81 s, 15.3 s (at 4.19 MHz operation) 122 s (at 32.768 KHz operation) Instruction cycle 8 (10 V withstand voltage, mask option pull-up capability) Max.20 x 4 segment drive, variable duty: static, 1/2, 1/3, 1/4 * 8-bit resolution x 6-ch (successive approximation type) * Low-voltage operation capability: VDD = 3.5 to 6.0 V * Basic interval timer x 1 * Timer/event counter x 1 * Watch timer x 1 * A/D converter * 8-bit resolution x 8-ch (successive approximation type) Low-voltage operation capability: VDD = 2.7 to 6.0 V Timer/counter * Basic interval timer x 1 * Timer/event counter x 2 * Watch timer x 1 * NEC standard serial interface (SBI) * Clocked serial interface External: 3 Internal: 4 External: 1 Internal: 1 Serial Interface Vectored interrupt Test input Clock output (PCL) Buzzer output (BUZ) External: 3 Internal: 3 External: 1 Internal: 1 , 524kHz, 262kHz, 65.5kHz (at 4.19MHz operation) 2kHz, 4kHz, 32kHz Transfer, addition/subtraction, increment/decrement, comparison VDD = 2.7 - 6.0 V 80-pin plastic QFP ( 14 mm) 80-pin plastic TQFP (fine pitch) ( 2kHz 8-bit data processing Transfer Operating voltage 5 Package On-chip PROM product 12mm) -- PD75P336 PD75P328 50 PD75P336 PD75P336 PD75P336 PD75304B PD75304B APPENDIX B. DEVELOPMENT TOOLS The following support tools are available for system development using the PD75P336. Language Processor Host Machine OS MS-DOSTM Ver. 3.30 to Ver. 5.00A* PC DOSTM (Ver. 3.1) Supply Medium Ordering Code (Product Name) RA75X relocatable assembler PC-9800 series 3.5-inch 2HD 5-inch 2HD S5A13RA75X S5A10RA75X IBM PC/ATTM 5-inch 2HC S7B10RA75X Remarks Assembler operation is only guaranteed for the host machines and operating systems quoted above. PROM Write Tools PROM programmer which enables a single-chip microcomputer with on-chip PROM to be programmed in stand-alone mode or by operations from a host machine by connection of the supplied board and a separately available programmer adapter. Typical PROMs from 256K bits to 4M bits can also be programmed. PROM programmer adapter for the PD75P336GC, used connected to the PG-1500. PROM program adapter for the PD75P336GK, used connect to the PG-1500. Controls the PG-1500 on the host machine, with the PG-1500 and host machine connected via a serial or parallel interface. Hardware PG-1500 PA-75P328GC PA-75P336GK Software Host Machine PG-1500 controller PC-9800 series OS MS-DOS Ver. 3.30 to Ver. 5.00A* PC DOS (Ver. 3.1) Supply Medium Ordering Code (Product Name) 3.5-inch 2HD S5A13PG1500 S5A10PG1500 S7B10PG1500 5 5-inch 2HD IBM PC/AT 5-inch 2HC * The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software. PG-1500 controller operation is only guaranteed for the host machines and operating systems quoted above. 5 Remarks 51 PD75P336 PD75P336 PD75304B PD75304B Debugging Tools IE-75000-R*1 The IE-75000-R is an in-circuit emulator which corresponds to the 75X series. For PD75P336 development the IE-75000-R is used in conjunction with an emulation probe. Efficient debugging is possible by connection to a host machine and PROM programmer. Emulation board for the IE-75000-R and IE-75001-R. Incorporated in the IE-75000-R. Used in conjunction with the IE-75000-R or IE-75001-R to perform PD75P336 evaluation. The IE-75001-R is an in-circuit emulator which corresponds to 75X series. For PD75P336 development the IE-75001-R is used in conjunction with an emulation board IE-75000-R-EM*2 and emulation probe. Efficient debugging is possible by connection to a host machine and PROM programer. Emulation probe for PD75P336GC. Used connect with the IE-75000-R or IE-75001-R, IE-75000-REM. An 80-pin LCC socket (EV-9200GC-80) is also available to simplify connection to the user system. Emulation probe for PD75336GK. Used connected with the IE-75000-R or IE-75001-R, IE-75000-REM. An 80-pin conversion adapter (EV-9500GK-80 is also available to simplify connection to the user system. Connects the IE-75000-R or IE-75001-R to the host machine via by RS-232-C and contronix I/F and controls the IE-75000-R or IE-75001-R on the host machine. IE-75000-R-EM Hardware IE-75001-R EP-75338GC-R EV-9200G-80 EP-75336GK-R EV-9500GK-80 Host Machine Software OS MS-DOS Ver. 3.30 to Ver. 5.00A*3 Supply Medium 3.5-inch 2HD Ordering Code (Product Name) IE control program S5A13IE75X PC-9800 series 5-inch 2HD S5A10IE75X IBM PC/AT PC DOS (Ver. 3.1) 5-inch 2HC S7B10IE75X * 1. 2. Maintenance product IE-75000-R-EM sold sparately The task-swap function is provided with Ver.5.00/5.00A, but the function cannot be used with this software. Operations of the IE control program is only guaranteed for the host machines and operating systems quoted above. 5 3. Remarks 52 Development Tools Configuration 5 In-Circuit Emulator IE-75000-R IE-75001-R*1 RS-232-C IE Control Program Emulation Probe EP-75336GC-R EP-75336GK-R Centronics I/F IE-75000-R-EM Host Machine PC-9800 Series IBM PC/AT (Symbolic Debugging Possible) *2 User System PG-1500 Controller Pruducts Incorporating PROM PROM Programmer PG-1500 PD75P336GC PD75P336GK Relocatable Assembler + Programmer Adapter PA-75P328GC PA-75P336GK * 1. The IE-75001-R does not incorporate the IE-75000-R-EM (Available separately.) 2. EV-9200GC-80 EV-9500GK-80 PD75P336 PD75P336 PD75P336 PD75P336 PD75P336 PD75304B PD75304B 53 PD75P336 PD75P336 PD75304B PD75304B 54 PD75P336 PD75P336 PD75P336 PD75304B PD75304B 55 PD75P336 [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Special : Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 MS-DOSTM is a trademark of MicroSoft Corporation. PC DOSTM and PC/ATTM is a trademark of IBM Corporation. |
Price & Availability of UPD75P336 |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |