Part Number Hot Search : 
KBPC1501 STP6625 68HC0 1N3005A SZ5224 15KPA45 DO204AL MC79M12
Product Description
Full Text Search
 

To Download RFG60P05E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 RFG60P05E
Data Sheet January 2002
60A, 50V, 0.030 Ohm, ESD Rated, P-Channel Power MOSFET
This is a P-Channel power MOSFET manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. It was designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. This type can be operated directly from integrated circuits. Formerly developmental type TA09835.
Features
* 60A, 50V * rDS(ON) = 0.030 * Temperature Compensating PSPICE(R) Model * 2kV ESD Rated * Peak Current vs Pulse Width Curve * UIS Rating Curve * 175oC Operating Temperature * Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"
Ordering Information
PART NUMBER RFG60P05E NOTE: PACKAGE TO-247 BRAND RFG60P05E
Symbol
D
When ordering, use the entire part number.
G
S
Packaging
JEDEC STYLE TO-247
SOURCE DRAIN GATE DRAIN (BOTTOM SIDE METAL)
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
RFG60P05E
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified RFG60P05E -50 -50 20 60 Refer to Peak Current Curve 215 1.43 Refer to UIS Curve 2 -55 to 175 300 260 UNITS V V V A W W/oC W/oC kV
oC oC oC
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) (Figure 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Rating (Figure 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Electrostatic Discharge Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD MIL-STD-883, Category B(2) Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC.
Electrical Specifications
PARAMETER
TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS IGSS rDS(ON) t(ON) td(ON) tr td(OFF) tF t(OFF) Qg(TOT) Qg(-10) Qg(TH) CISS COSS CRSS RJC RJA VGS = 0V to -20V VGS = 0V to -10V VGS = 0V to -2V VDD = -40V, ID = 60A, RL = 0.67 Ig(REF) = -4mA TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS = -50V, VGS = 0V VDS = 0.8 x Rated BVDSS, TC = 150oC VGS = 20V ID = 60A, VGS = -10V (Figure 9) VDD = -25V, ID = 30A, RL = 0.83, VGS = -10V, RGS = 2.5 (Figure 13) MIN -50 -2 TYP 20 60 65 20 7200 1700 325 MAX -4 -1 -25 100 0.030 125 125 450 225 15 0.70 30 UNITS V V A A nA ns ns ns ns ns ns nC nC nC pF pF pF
oC/W oC/W
Drain to Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current
Gate to Source Leakage Current Drain to Source On Resistance (Note 2) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 10V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient
VDS = -25V, VGS = 0V, f = 1MHz (Figure 12)
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage (Note 2) Diode Reverse Recovery Time NOTE: 2. Pulse test: pulse width 300s maximum, duty cycle 2%. 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). SYMBOL VSD tRR TEST CONDITIONS ISD = -60A ISD = -60A, dISD/dt = 100A/s MIN TYP MAX -1.75 200 UNITS V ns
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
RFG60P05E Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID , DRAIN CURRENT (A) 0 25 50 75 100 125 150 175 0.8 0.6 0.4 0.2 0
Unless Otherwise Specified
-70 -60 -50 -40 -30 -20 -10 0 25 50 75 100 125 150 175
TC , CASE TEMPERATURE (oC)
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 ZJC , NORMALIZED TRANSIENT THERMAL IMPEDANCE 1 0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 100 101 PDM
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
-500
TC = 25oC, TJ = MAX RATED
-500 VGS = -10V
-100
100ms
IDM , PEAK CURRENT (A)
ID , DRAIN CURRENT (A)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT CAPABILITY AS FOLLOWS:
1ms -10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -1 -1 10ms 100ms DC VDSS MAX = -50V -100
175 - T C I = I 25 --------------------- 150
-100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION -50 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101
-10 VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
FIGURE 5. PEAK CURRENT CAPABILITY
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
RFG60P05E Typical Performance Curves
-200 IAS , AVALANCHE CURRENT (A) STARTING TJ = 25oC ID , DRAIN CURRENT (A) -100 -120 VGS = -10V -80 VGS = -6V -40 VGS = -4.5V VGS = -5V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC
Unless Otherwise Specified (Continued)
-160 VGS = -20V
VGS = -8V VGS = -7V
STARTING TJ = 150oC
If R = 0 tAV = (L) (IAS) / (1.3RATED BVDSS - VDD) If R 0 tAV = (L/R) ln [(IAS*R) / (1.3 RATED BVDSS - VDD) + 1] -10 0.01 0.1 1 tAV , TIME IN AVALANCHE (ms) 10
0 0 -2 -4 -6 -8 VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 7. SATURATION CHARACTERISTICS
IDS(ON) , DRAIN TO SOURCE CURRENT (A)
-160
175oC 25oC
-120
NORMALIZED DRAIN TO SOURCE ON RESISTANCE
VDD = -15V PULSE DURATIONM = 80s DUTY CYCLE = 0.5% MAX
-55oC
2 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = -10V, ID = 60A 1.5
-80
1
-40
0.5
0
0
-2
-4
-6
-8
-10
0 -80
-40
0
40
80
120
160
200
VGS , GATE TO SOURCE VOLTAGE (V)
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 8. TRANSFER CHARACTERISTICS
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
2
VGS = VDS, ID = 250A NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE
2 ID = 250A
THRESHOLD VOLTAGE
NORMALIZED GATE
1.5
1.5
1
1
0.5
0.5
0 -80
-40
0
40
80
120
160
200
0 -80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
RFG60P05E Typical Performance Curves
8000 CISS C, CAPACITANCE (pF) 6000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGS COSS
Unless Otherwise Specified (Continued)
-50 -10
VDS , DRAIN TO SOURCE VOLTAGE (V)
-37.5
VDD = BVDSS RL = 0.83 IG(REF) = 4mA VGS = -10V 0.75 BVDSS
VDD = BVDSS
-7.5
4000
-25
-5
0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 0 -2.5
2000 CRSS 0
-12.5
0.50 BVDSS 0.25 BVDSS
0 I G ( REF ) 20 -----------------------I G ( ACT ) t, TIME (s) I G ( REF ) 80 -----------------------I G ( ACT )
0
-5
-10
-15
-20
-25
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS tAV L VARY tP TO OBTAIN REQUIRED PEAK IAS RG 0
+
VDD VDD
0V VGS
DUT tP IAS 0.01
IAS tP BVDSS VDS
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
tON VDS RL 0 VGS td(ON) tr 10%
tOFF td(OFF) tf 10%
VDD VGS RGS
+
VDS VGS 0
90%
90%
DUT
10% 50% PULSE WIDTH 90% 50%
FIGURE 16. SWITCHING TIME TEST CIRCUIT
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
VGS , GATE TO SOURCE VOLTAGE (V)
RFG60P05E Test Circuits and Waveforms
VDS RL 0 VGS = -2V VGS
(Continued)
Qg(TH)
VDS
VDD
+
-VGS Qg(-10) VDD Qg(TOT) 0 IG(REF)
VGS = -10V
DUT Ig(REF)
VGS = -20V
FIGURE 18. GATE CHARGE TEST CIRCUIT
FIGURE 19. GATE CHARGE WAVEFORMS
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
RFG60P05E PSPICE Electrical Model
.SUBCKT RFG60P05E 2 1 3; CA 12 8 1.01e-8 CB 15 14 1.05e-8 CIN 6 8 6.9e-9 DBODY 5 7 DBDMOD DBREAK 7 11 DBKMOD DPLCAP 10 6 DPLCAPMOD EBREAK 5 11 17 18 -76.35 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTO 20 6 8 18 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 7.9e-9 LSOURCE 3 7 4.18e-9
12 DPLCAP VTO + GATE 1 LGATE RGATE 9 EVTO 20 18 8 ESG 10 8 6 5 + RDRAIN EBREAK 16 MOS2 21 6 RIN CIN 8 S1A 13 8 S1B CA + 6 EGS -8 13 S2A 14 13 S2B CB + EDS 14 5 8 IT 15 17 MOS1 11 DBREAK RSOURCE 7 RBREAK LSOURCE 3 SOURCE 18 + 17 18 LDRAIN DRAIN 2
REV 9/20/94
-
-
-
MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 12.83e-3 RGATE 9 20 1.5 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 3.25e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 -0.83
+
-
DBODY
RVTO 19
VBAT +
-
.MODEL DBDMOD D (IS = 1.24e-12 RS = 4.72e-3 TRS1 = 1.43e-3 TRS2 = -4.91e-7 CJO = 6.98e-9 TT = 1.5e-7) .MODEL DBKMOD D (RS = 1.11e-1 TRS1 = 1.34e-3 TRS2 = 4.46e-12) .MODEL DPLCAPMOD D (CJO = 15e-10 IS = 1e-30 N = 10) .MODEL MOSMOD PMOS (VTO = -3.71 KP = 31.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 9.42e-4 TC2 = 0) .MODEL RDSMOD RES (TC1 = 5.85e-3 TC2 = 7.69e-6) .MODEL RVTOMOD RES (TC1 = -3.39e-3 TC2 = 1.07e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.6 VOFF = 2.6) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.6 VOFF = 4.6) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.16 VOFF = -3.84) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.84 VOFF = 1.16) .ENDS For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
(c)2002 Fairchild Semiconductor Corporation
RFG60P05E Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM
DISCLAIMER
FAST (R) FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM
OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench (R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SILENT SWITCHER (R)
SMART STARTTM STAR*POWERTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM UHCTM UltraFET (R)
VCXTM
STAR*POWER is used under license
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4


▲Up To Search▲   

 
Price & Availability of RFG60P05E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X