![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
APPLICATION NOTE ST7544 - UNIVERSAL ANALOG FRONT-END By Joel HULOUX SUMMARY I. I.1. I.2. I.3. I.4. I.4.1. I.4.2. I.5. I.5.1. I.5.2. I.6. I.6.1. I.6.2. I.6.3. I.6.4. II. II.1. II.1.1. II.1.2. II.2. II.2.1. II.2.2. II.3. II.3.1. II.3.2. II.3.3. II.4. II.4.1. II.4.2. III. ST7544. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GENERAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SIGNAL TRANSFER BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IIR FILTER OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coefficient Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detailed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IIR FILTER PROGRAMMING EXAMPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FILTER COEFFICIENT CODING IN ST7544 TIME-SLOT FORMAT. . . . . . . . . . . . . . Filter Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter Coefficients Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coefficient Coding in Time-Slot Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST7544 APPLICATION BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CRYSTAL OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPLICATION 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPLICATION 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PERFORMANCE MEASUREMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTERFACING ST7544 WITH DSP56000 (MOTOROLA). . . . . . . . . . . . . . . . . . . . . . Page 2 2 2 3 4 4 4 7 7 7 12 12 12 12 13 14 14 14 15 15 15 15 15 15 16 17 17 17 17 18 19 22 ANNEXE 1 : Schematics of Application Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANNEXE 2 : Layout of Application Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN654/1294 1/28 ST7544 - UNIVERSAL ANALOG FRONT-END I - ST7544 . . . I.1 - FEATURES FULL ECHO CANCELLING CAPABILITY FULLY COMPATIBLE WITH THE ST7543 (7543 mode) 16-BIT OVERSAMPLING A/D AND D/A CONVERTERS - Programmable down-sampling frequency from 7200 to 16000Hz - Sampling frequency can be 3, 4, 6, 8, 12, 16 x Symbol rate - Programmable Over sampling frequency (128 or 160 x Sampling frequency) - The ST7544 can work with external oversampling clocks - Programmable Symbol rate (600, 1200, 1600, 2400, 2560, 2743, 2800, 2954, 3000, 3200, 3429 and 3491) - Bit rates of 300 bps, 600bps, 1200 and all multiples of 2400 bps up to 28800 bps can be generated - Dynamic range : 92dB with a sampling frequency 9600Hz, Oversampling ratio 160 - Total harmonic distortion : -89dB ON CHIP REFERENCE VOLTAGE THREE PROGRAMMABLE DIGITAL FILTERS SECTIONS : - Tx interpolation filter - Rx decimation filter Up to 14th order each - Rx reconstruction filter Coefficients loaded into RAM ANCILLARY CONVERTERS FOR EYE-DIAGRAM MONITORING CLOCK SYSTEM BASED ON DIGITAL PHASE LOCKED LOOPS - Separate Tx DPLL and Rx DPLL - Terminal clock input for Tx synchronization on all multiples of 2400Hz (V.Fast synchronization mode) or on sub-multiple of baud rate (7543 synchronization mode) - Bit, Baud, Sampling and Highest synchronous clock outputs - Maximum master clock frequency is 38MHz SINGLE OR DUAL SYNCHRONOUS SERIAL INTERFACE TO DSP SINGLE POWER SUPPLY VOLTAGE : +5V . . . LOW POWER CONSUMPTION : - 260mW operating power at the nominal crystal frequency of 36.864MHz - 160mW operating power at the crystal frequency of 18.432MHz - Less than 5mW in the LOW-POWER RESET MODE 1.2MM CMOS PROCESS 44-PIN PLCC OR 44-PIN TPQFP (1.4mm body thickness) I.1 - GENERAL DESCRIPTION The ST7544 is a single chip Analog Front-End (AFE) designed to implement high speed voicegrade Modems up to 28800 bps with echo cancelling capability. Associated with one or several Digital Signal Processors (DSP), such as the ST189XX family, it provides a powerful solution for the implementation of multi-mode Modems meeting CCITT (V.21, V.22, V.22 bis, V.23, V.26, V.27, V.29, V.32,V.32 bis and V.33) and BELL (103, 202, 212A...) recommendations. It is fully compatible with the ST7543 in 7543 mode and is also well suited emerging applications involving bit rates up to 28800 bps (in the VFast synchronization mode). The transmit section includes a 16-bit over-sampling D/A converter with a programmable interpolating filter. The receive section includes a 16-bit oversampling A/D converter with two programmable filters (one for decimation and the other for reconstruction). Oversampling ratio is selectable to either 128 or 160. Two additional 8-bit D/A converters allow eyediagram monitoring on a scope for modem performance adjustment. Two independantclock generator systems are provided, one synchronized on the Tx rate and the other on the Rx rate. In External Clock Mode, external oversampling clocks can be provided to the chip. Two independant synchronous serial interfaces (SSI) allow several versatile ways of communicating with standard DSPs. To savepower, e.g. in lap-top modem applications, the lowpower reset mode can be used to reduce the power consumption to less than 5mW. . . . . . . 2/28 ST7544 - UNIVERSAL ANALOG FRONT-END I.3 - SIGNAL TRANSFER BLOCK DIAGRAM The ST7544 Block Diagram (Figure 1) illustrates three paths as follows : The Transmit D/A Section, the Receive A/D section and the Receive Reconstruction section. Figure 1 TxDO BCLKX SSIA Fsx TxDI Serial/Parallel Conversion 16-bit data bus synchronized to the Tx clock system ResSig RxTx TxSig Fsx 2 bits Txoclk Fsx Fsx Fsx 4 x Fsx Status RxS1 RxS2 IIR3 RAM3 4 x Fsx IIR2 RAM2 4 x Fsx IIR1 RAM1 or 5 x Fsx or 5 x Fsx or 5 x Fsx Selector Txoclk FIR3 Txoclk FIR2 Txoclk Txoclk FIR1 Fsx Txoclk Fsr Control Logic Txoclk = 128 or 160 x Fsx A/DC D/AC RxSig FsrSync Analog Input (Rx Signal + Echo) FsrSync RxSig Analog Output (Tx Signal) 16-bit data bus synchronized to the Rx clock system Multiplexer RxDO BCLKR SSIB Fsr RxDI SSIM Serial/Parallel Conversion 8 D7:D0 D/AC 8 D15:D8 D/AC Reg Fsr Rxoclk Note : Register with Tristate Output 16-bit data bus Tx EYEX EYEY 3/28 7544-04.EPS ST7544 - UNIVERSAL ANALOG FRONT-END I.4 - IIR FILTER OPERATION Each IIR filtering section included in the ST7544 can perform up to seven biquadratic transfer functions in cascade, operating at four times the sampling frequency (see Figure 2). Each biquad is defined by five coefficients, A, B, C, D and E (see Figure 3). An additional coefficient F, scales the IIR filter output. Unused biquads are made transparent by programming A to one and the four remaining coefficients to zero. Such biquads should preferably be located in the first sections of the IIR filter in order to reduce the calculation noise. I.4.1 - Coefficient Rounding Initially, coefficients of the filter to be implemented must be exclusively between +2 and -2. To derive the actual usable 12+1 bit coefficients, the rounding process described in Figure 4 must be performed. Each 13 bit coefficient K is split into its doubling factor K2, and its 12 bit basic value K1, as the IIR architecture works with 12 bit coefficients and uses an extra accumulation when coefficient doubling is needed. 12 12 K2 [0,1] and -2 < K1 < +2 The coefficients are loaded into the different IIR filters through 16 bit wide time slots. The format to be used is as follows : MSB K1 LSB K2 (12-bit) 000 (1 bit) (3-bit) <--------- 16 bit word --------> words set to zero and the F coefficient word : B(1), C(1), A(1), D(1), E(1), B(2),..., E(7), 0000H , 0000H, F The total number of words sent is therefore 38. I.4.2 - Detailed Operation The architecture of the device supporting the IIR filter is based on 28 bit data path. The basic function is as follows: one coefficient K(N) is multipled by one sample X(N) followed by one accumulation with value clampling. It can be precisely described as follows : FUNCTION PAC K(N), X(N), S LOCAL P P = TRUNC (K1(N) x X(N)/212) S=S+P IF ABS(S) > 227 THEN IF SIGN(S) > 0 THEN CLAMP S TO 227-1 ELSE CLAMP S TO 227 IF K2(N) = 1 THEN S = S + P IF ABS(S) > 227 THEN IF SIGN(S) > 0 THEN CLAMP S TO 227-1 ELSE CLAMP S TO 227 END OF FUNCTION The TRUNC function is a two's complement truncature. As previously mentionned, the second accumulation is controlled by the doubling factor K2(N). The complete process of computing 16 bit output samples (VOUT) from 16 bit input samples (VIN) appears in Figure 5. To programme one IIR filter it is necessary to send five words per biquad followed by two additional Figure 2 : IIR Filter Diagram BIQUAD#1 VIN 12 2 BIQUAD#2 V IN (2) V OUT (2) BIQUAD#7 VIN (7) V OUT (7) F V IN (1) V OUT (1) V OUT Coefficients : A(1), B(1),..., E(1) A(2), B(2),..., E(2) A(7), B(7),..., E(7) 4/28 7544-22.EPS ST7544 - UNIVERSAL ANALOG FRONT-END Figure 3 : BIQUAD Structure V IN (N) A(N) V 0 (N) V OUT (N) Delay Hn(Z) = A B(N) V 1 (N) D(N) 1 + DZ-1 + EZ-2 1 - BZ-1 - CZ-2 Delay C(N) V 2 (N) E(N) Equation Set : V0(N) = B(N) x V1(N) + C(N) x V2(N) + A(N) x VIN(N) VOUT(N) = V0(N) + D(N) x V1(N) + E(N) x V2(N) N = BIQUAD NUMBER (1:7) 7544-23.EPS Next Step with : V2(N) = V1(N) V1(N) = V0(N) Figure 4 : IIR Coefficients Rounding STARTING COEFFICIENT k(N) (-2 < k(N) < +2) K = A, B, C, D, E or F -1 < k(N) < +1 Yes No K2(N) = 0 K1(N) = ROUND (204 8*k(N)) K2(N) = 1 K1(N) = ROUND (1024*k(N)) 7544-24.EPS K2 = 0 or 1 K1 = 12-Bit Word 5/28 ST7544 - UNIVERSAL ANALOG FRONT-END Figure 5 : IIR Operating Sequence NEW INPUT SA MPLE V IN ( 16-bit) VIN STORAGE IN 28-BIT FORMAT T = 800 H x V IN FIRST BIQUAD N=1 ACCUMULATOR RESET S= 0 RECURSIVE COEFFICIENTS PAC B(N), V 1 (N), S PAC C (N), V 2 (N), S PAC A(N), T, S V0(N) STORED INTO T T=S DIRECT COEFFICIENTS PAC D(N), V 1 (N), S PAC E(N), V 2 (N), S STATE VARIABLES UP-DATING FOR THE NEXT COMPUTATION V 2 (N) = V 1 (N) V 1 (N) = Temp VOUT (N) STORED INTO T T=S NEXT BIQUAD N = N+ 1 No N<7 Yes OUTPUT SCALING COEFFIECIENT S=0 PAC F, T, S IIR OUTPUT SAMPLE STORED INTO T T =S TO 7FFFH OR 8000 H 6/28 7544-25.EPS IIR OUTPUT SAMPLE LOADED INTO V OUT AFTER 16-BIT SATURATION (NEW OUTPUT SAMPLE) V OUT = T IF GREATER THAN 16-BIT THEN CLAMPED ST7544 - UNIVERSAL ANALOG FRONT-END I.5. - IIR FILTER PROGRAMMING EXAMPLE I.5.1 - Example of Configuration one external clock : serial port mode : transmit sampling frequency : receive sampling frequency : bit frame clock frequency : transmit bit clock frequency : receive bit clock frequency : transmit baud clock frequency : receive baud clock frequency : transmit filter : 36.864MHz dual 9600Hz 9600Hz 160*Fsx(r) 14400Hz 14400Hz 2400Hz 2400Hz low-pass (spec table 48) : banp-pass spec table 50) : low-pass (spec table 43) - TxDI and RxDI must be tied to Vdd while the serial interface is not managed by the host processor. - RC network on NLPR pin.Typically RC=10ms (R=100k ,C=100nF) (This time must include the external clock start-up time,and the ST7544 set up time). - SSIM pin tied to DVDD : dual serial port mode. - BFRS pin tied to DVDD : bit frame frequency set to 160 time Fsx(r). I.5.3 - Software Configuration Writing convention : 'x' FRAME x,1 FRAME x,2 FRAME x,3 '#" 'b' 'h' 'XXXX' frame number frame for RAM 1 loading frame for RAM 2 loading frame for RAM 3 loading delimits a programmer's remark (comments) indicates a binary number indicates an hexadecimal number user defined - receive filter - interpolation filter I.5.2 Hardware Configuration - XTAL10 and XTAL11 hard-wired to the external clock 7/28 ST7544 - UNIVERSAL ANALOG FRONT-END # SYNCHRONOUS SERIAL INTERFACE A #FRAME 0.1. Select the correct sampling frequency and set Stb bit in order to select a RAM B9A4h #TxI0 MS =1 coefficient loading mode selected # Stb=0 start bit coefficient loading activated # QS =1 XTAL 10 selected # RAi=11b no RAM accessed # ADi=001b TxCR1 selected # Di =A4h Fsx=9600Hz, Txrclk=2400Hz # TxHSCLK=12.288MHz # Band split mode inactive FFFFh#TxI1 FFFFh#TxI2 FFFFh#TxI3 # #FRAME 1.1 Select RAM 1 and start the coefficient loading of the low-pass filter,and select TxCLK E0F1h#TxI0 MS =1 # stb=1 # QS =1 # RAi=00b RAM 1 selected. # ADi=000b TxCR0 selected. # Di =F1h TxCLK = 14400Hz FFFFh#TxI1 unused 0000h#TxI2 word 1 RAM 1 ( first IIR coefficient) 0000h#TxI3 word 2 RAM 1 # FRAME 2.1 RAM 1 coeff loading,fcomp and fshift prog and Stb ready to select another RAM A340h #TxI0 MS =1 # stb=0 # QS =1 # RAi=00b RAM 1 selected. # ADi=011b TxCR3 selected. # Di =40h fcomp = 2400Hz, fshift=Fsx/2 A000h #TxI1 word 3 RAM 1 0000h #TxI2 word 4 RAM 1 0000h #TxI3 word 5 RAM 1 # # #FRAME 3.1 RAM 1 coefficient loading, no control register access A7FFh #TxI0 B7D8h #TxI1 word 6 RAM 1 42B0h #TxI2 word 7 RAM 1 0118h #TxI3 word 8 RAM 1 # #FRAME 4.1 to 12.1 RAM 1 coefficient loading, no control register access A7FFh #TxI0 XXXXh XXXXh XXXXh 8/28 ST7544 - UNIVERSAL ANALOG FRONT-END #FRAME 13.1 Last RAM 1 loading frame A7FFh #TxI0 0000h #TxI1 word 36 RAM 1 0000h #TxI2 word 37 RAM 1 0008h #TxI3 word 38 RAM 1 # # #RAM 2 COEFFICIENT LOADING #FRAME 1.2 Select RAM 2 and start the coefficient loading of BP filter EFFFh #TxI0 MS =1 # Stb=1 # QS =1 # RAi=01b RAM 2 selected # ADi=111b FFFFh #TxI1 unused 0000h #TxI2 word 1 RAM 2 0000h #TxI3 word 2 RAM 2 # #FRAME 2.2 RAM 2 coefficient loading,no control register access and rest Stb AFFFh #TxI0 MS =1 # Stb=0 # QS =1 # RAi=01b RAM 2 selected # ADi=111b A000h #TxI1 word 3 RAM 2 0000h #TxI2 word 4 RAM 2 0000h #TxI3 word 5 RAM 2 # #FRAME 13.2 Last RAM 2 loading frame A7FFh #TxI0 0000h #TxI1 word 36 RAM 2 0000h #TxI2 word 37 RAM 2 0008h #TxI3 word 38 RAM 2 # # # #RAM 3 COEFFICIENT LOADING #FRAME 1.3 select RAM 3 and start coeff loading F7FFh #TxI0 MS =1 # Stb=1 # QS =1 # RAi=10b RAM 3 selected # ADi=111b FFFFh #TxI1 unused 0000h #TxI2 word 1 RAM 3 0000h #TxI3 word 2 RAM 3 # # 9/28 ST7544 - UNIVERSAL ANALOG FRONT-END #FRAME 2.3 RAM 3 coefficient loading,no control register access and rest Stb # # B7FFh #TxI0 A000h #TxI1 word 3 RAM 2 0000h #TxI2 word 4 RAM 2 0000h #TxI3 word 5 RAM 2 # # #FRAME 3.3 to 12.3 RAM 3 coefficient loading, no control register access B7FFh #TxI0 XXXXh XXXXh XXXXh # # #FRAME 13.3 Last RAM 3 loading frame B2C4h #TxI0 MS =1 # Stb=0 # QS =1 # RAi=10b RAM 3 selected # ADi=010b TxCR2 selected # Di =C4h 0dB attenuation on XMIT channel and synchronize the TxCLK clock on TxRCLK 0000h #TxI1 word 36 RAM 2 0000h #TxI2 word 37 RAM 2 0008h #TxI3 word 38 RAM 2 # # # FRAME 14 3FFFh #TxI0 MS =0 Data mode # Stb=0 ready to read ram # QS =1 # RAi=11b No RAM access # ADi=111b No Control register access XXXXh #TxI1 Txsig XXXXh #TxI2 Ressig XXXXh #TxI3 unused # # 10/28 ST7544 - UNIVERSAL ANALOG FRONT-END # SYNCHRONOUS SERIAL INTERFACE B # #FRAME 0. Select the correct sampling frequency 01A4h #TrI0 ADi=001b RxCR1 selected # Di =A4h Fsr=9600Hz, Rxrclk=2400Hz # RxHSCLK=12.288MHz FFFFh #TrI1 FFFFh #TrI2 FFFFh #TrI3 # #FRAME 1. Select the correct receive bit clock (RxCLK) frequency 00F1h #TrI0 ADi=000b RxCR0 selected # Di =F1h RxCLK=14400Hz FFFFh #TrI1 FFFFh #TrI2 FFFFh #TrI3 # #FRAME 2. No phase shift selected 0200h #TrI0 ADi=010b RxCR2 selected # # Di =00h no phase shift FFFFh #TrI1 FFFFh #TrI2 FFFFh #TrI3 # # #FRAME 3. select interpolation factor 0340h #TrI0 ADi=011b RxCR3 selected # Di =40h interpolation factor = 160 FFFFh #TrI1 FFFFh #TrI2 FFFFh #TrI3 # # #FRAME 4 FFFFh #TrI0 ADi=111b no control register access XXXXh #TrI1 EYEX-EYEY FFFFh #TrI2 reserved FFFFh #TrI3 reserved # # 11/28 ST7544 - UNIVERSAL ANALOG FRONT-END I.6 - FILTER COEFFICIENT CODING IN ST7544 TIME-SLOT FORMAT I.6.1 FILTER CHARACTERISTICS Type Order Sampling frequency passband edge HP stopband edge HP stopband loss HP passband edge LP stopband edge LP stopband loss LP passband ripple coefficient wordlength : : : : : : : : : : : band-pass filter 11 9.6kHz*5 = 48kHz 300Hz (3dB , butterworth) 200Hz 8dB 3200Hz (Cauer) 4200Hz 60dB 0.1dB 11 bits + sign ELSE EXTRABIT(i)=0 AA(i)=CINT(A(i)*2048) END IF AA(i)=(AA(i)<3)AND 32767 AA(i)=(AA(i) OR EXTRABIT(i)) NEXT END SUB with : INPUT : NbBiquad number of biquadratic function. A() Coefficient in decimal format OUTPUT: AA() Coefficient in ST7544 time-slot format. writing convention: ABS() return an absolute value CINT() convert its argument to an integer. (if the fractional part of an argument is equal to 0.5, it is rounded toward the even number). n left shift of n bit. Note : It is not possible to code -1 or 1 , we therefore do as following +1 = 2 * +0.5 -1 = 2 * -0.5 So IT IS NOT POSSIBLE TO CODE +/- 2 Filter table in Hexadecimal format. B 000 3D88h B6A0h BEB8h B940h B7E8h B5A0h 0000 C 0000 0000 4D18h 4278h 4210h 46E0h 5278h 0000 A 3C88h 37E0h CE0h B58h E68h F98h 238h 20H D E000h E000h E000h C9A8h CBE8h D520h 1690h 0000 E 0000 0000 0000 A000h A000h A000h A000h 0000 I.6.2 - Filter Coefficients Table B 0 0.9614815 1.706978 1.959984 1.675779 1.747247 1.789548 0 C 0 0 - 0.7952128 - 0.961496 - 0.7113152 - 0.8925031 - 0.967721 0 A 0.9 0.8414686 0.1985583 0.1774637 0.0346 0.1021413 0.4543867 0.0025201 D -1 -1 -1 - 1.33996 - 1.698336 - 1.627507 0 E 0 0 0 1 1 1 0 0.35224561 1 I.6.3 - Coefficient Coding in ST7544 Time-slot Format Example of subroutine to code the coefficients in the ST7544 time-slot format. SUB CODE(A(),NbBiquad,AA()) LOCAL i,EXTRABIT() FOR i=1 TO NbBiquad IF ABS(A(i))=1 THEN EXTRABIT(i)=-32768 AA(i)=CINT((A(i)/2)*2048) 12/28 ST7544 - UNIVERSAL ANALOG FRONT-END I.6.4 - Transfer Function Figure 6 TRANSFER FUNCTION Coefficients 11bits plus sign SPECTRAL MAGNITUDE (dB) 10 -10 MAGNITUDE (dB) -30 -50 -70 -90 -110 -130 7544-26.EPS Figure 7 TRANSFER FUNCTION Coefficients 11 bits plus sign 0.2 -0.2 -0.6 -1.0 -1.4 -1.8 -2.2 -2.6 -3.0 7544-27.EPS 0 2 4 6 8 10 0 1 2 (Thousands) FREQUENCY (Hz) 3 4 (Thousands) FREQUENCY (Hz) Figure 8 GROUP DELAY (1 SAMPLE= 1/(5*Fsx)) TRANSFER FUNCTION Coefficients 11 bits plus sign 90 80 70 60 50 40 30 20 10 7544-28.EPS 0 1 2 (Thousands) FREQUENCY (Hz) 3 4 13/28 ST7544 - UNIVERSAL ANALOG FRONT-END II - ST7544 APPLICATION BOARD The ST7544 application board will give you a powerful analog front-end evaluation/development tool. Two applications are available on board : - Appli 1 : Analog front-end, - Appli 2 : Modem analog front-end. Figure 9 Tx^Ana UNIVERSAL ANALOG FRONT-END APPLI_1 1 DIGITAL INTERFACE Rx^Ana ST7544 2 UNIVERSAL ANALOG FRONT-END APPLI_2 LINE 7544-29.EPS - Digital interface gives all necessary signals in order to control and program the ST7544. - The Digital interface connector is fully compatible with ST18933 development tools. - Functionality with 2 crystals available on board, - Eye diagram monitoring, - Single-ended application. - Full differential duplexer application. II.1 - CRYSTAL OSCILLATOR XTAL10 and XTAL11 inputs must be tied to external crystal(s) or external clock(s).These inputs are selected from the TxCtrl register.The maximum clock rate is 38MHz.XTAL10 is the default external clock/crystal input.It is mandatory to short-circuit XTAL10 and XTAL11 when a single external crystal or clock generator is used.The nominal master clock frequency is 36.864MHz but the onchip amplifier is designed for a parallel crystal oscillator with a frequency equal to 18.432MHz. XTAL2 output is to be tied to one or two external crystal (Figures 10 and 11). If an external clock is used, XTAL2 should be left open. II.1.1 - Single Crystal Oscillator Figure 10 ST7544 XTAL10 XTAL11 Q XTAL2 1.5H 0.3 C3 10pF C1 10pF C2 100pF 7544-30.EPS Fq = 36.864MHz Thrird overtone CL = SERIAL Operating range : 0 - 70 deg, 5V 5% Start-up : Max. = 10mS Typ. = 3.7 mS 14/28 ST7544 - UNIVERSAL ANALOG FRONT-END II.1.2 - Double Crystal Oscillator Figure 11 The 3dB cut-off frequency of the 1st order filter inside the ST7544 is : Fc = TxOCLK / (2 10) E.g : 1st LP : Fsx = 7.2kHz over=4 then Fc = 14.7kHz 2nd LP : R =15k C=680pF then Fc = 15.6kHz As the transfer function of the filters are known,the digital signal can be compensated if needed. The C14=1F gives on BNC J5 a signal referenced to AGND. II.2.2 - Receive The receive part is single-ended to differential.There is a low-pass filter realised by R13,R14 and C16. Fc = 1 / ( 2 * PI * 1.2E03 * 2E-12 ) = 66kHz Having a Fc at 66kHz, we have a flat transfer function in working Band (0-4kHz). We DO NOT recommend the use of OP-AMP based filter as OP-AMP will present high impedance at high frequencies.This low-pass filter must be implemented as close as posssible to the pins RxA1 and RxA2. II.3 - APPLICATION 2 (duplexer) II.3.1 - Transmit We have a full differentiallow-pass filter on transmit the side before the DAA (see Figure 12) R1 = R21 = R22 = 13.2k R2 = R23 = R24 = 22k R3 = R25 = R26 = 22k C1 = 2 * C12 = 2*680pF = 1360pF C2 = C21 = 100pF Fc = 19.6kHz Ao = - R3/R1 = -1.66 X = 5 - Q= 0.1 ST7544 XTAL10 XTAL11 XTAL2 Fq1 C3 10pF Fq2 L1 1.5H 0.3 C1 10pF Operating range : 0 - 70 deg, 5V 5% Start-up : Max. = 10mS Typ. = 1.5 mS II.1.3 - Quartz Specification When you order a quartz, you have to specify the following parameters : - Nominal frequency (e.g 36.864MHz ,25.848MHz) - MODE (3rd overtone, Fundamental) - Load capacitance (SERIAL, 30pF) - Frequency tolerance (50 ppm from 0 to 70oC) II.2 - APPLICATION 1 ( single-ended ) II.2.1 - Transmit The transmit part is a differential single-ended with lo w-p a s s f ilt er re alise d by R6 // C1 2 a n d R7//C13.The resistors R6 and R7 must be equal as must the capacitor C12 and C13. 7544-31.EPS C2 100pF C3 10pF 15/28 ST7544 - UNIVERSAL ANALOG FRONT-END Figure 12 C21 C2 R25 R21 R23 R3 R1 V IN C12 V OUT V IN R22 R24 R26 C22 VOUT VIN R3 R1 1 R2 C1 V OUT FC = Q= 1 2 R2 R3 C1 C2 1 2X =- R2 R3 C2 P + R2 R3 C1 C2 P2 1 + R2 + R3 + R1 R3 R2R1R3 C2 + R2 C1 7544-32.EPS X= 1 R2 + 2 2 R3 II.3.2 - Receive We have 2 filters as in application 1 (LPF, Fc = 66kHz) and describe below (DC offset suppress, Fc = 85Hz) Figure 13 R33 R36 R R37 V IN C19 R38 VIN R39 R34 V OUT R2 R1 VOUT VIN =1 + R1 C P 1 + R2 C P C = 2 C19 R1 = R36 = R39 R2 = R37 = R38 C V OUT 16/28 7544-33.EPS ST7544 - UNIVERSAL ANALOG FRONT-END II.3.3 - Duplexer R,C : Improves the low frequency response.These values depend on the transfer function of the transformer.Filter transfer function realised by R,C must compensate for the loss in transformer at low frequency. Figure 14 X TRANSMIT X C 2xR R 7544-34.EPS Phone Line C 2 xR RECEIVE R Z0 : Nominal line impedance.(e.g : Z0 = 600) TRANSFO : M = 1 , Rs = Rp = 100 2 * X = Z0/M2 - Rp - Rs/M2 2 * X = Z0 - 2 * Rp = 600 - 200 = 400 X = 200 II.4 - PERFORMANCE MEASUREMENT II.4.1 - Configuration The following measurements have been made with ST7544 application board on application (1) with crystal 36.864MHz.The analog transmit signal (J5) is connected to analog receive signal (J4). The IIR1 filter ( low-pass ) file is the following : FFFF B7D8 48A0 3508 DD90 A000 0000 0000 42B0 2838 CFA0 A000 ADF0 0000 0000 0118 CB68 A000 AC18 5338 0008 A000 CA08 A000 AED8 6118 0858 0000 A000 B268 59D0 07A0 4098 0000 B570 5070 2898 3368 A000 The control registers are programmed as following : F9A4 TxCR1 M*Q=4*6 U=4 P0=3 and BS=0, Fsx = 9600Hz, Symbol rate = 2400 baud, Txhsclk = 12.288MHz, Band split Mode inactive F8F1 TxCR0 NRST=F1h, Bit rate clock frequency = 14400Hz FB40 TxCR3 V=010b , W=0 , Ts=000 , DL=0, Fcomp = Txrclk, Oversampling ratio = 160, Phase shift freq (Fsx/2 (Fq Fsx/2))normal mode FAC4 TxCR2 AT=11b, LTX=0, LC=0, SST=0, VF=0, R2=0, attenuation = 0dB, mode 7543, synchronize TxCLK on TxRCLK, Normal mode synchronization 01A4 RxCR1 idem TxCR1 00F1 RxCR0 idem TxCR0 0200 RxCR2 no phase shift 0340 RxCR3 V = 160 - Interpolation ratio II.4.2 - Measurement We generate a digital sinewave of 1003.125Hz (1024 samples).This signal is sent to Txsig.Then we do a FFT (1024 samples) on the digital receive signal RxTx. Figure 15 ST7544 ANALOG LOOP-BACK Fq = 36.864MHz, Fsx = 9600Hz, Oversampling = 5 0 -20 -40 S/N (dB) -60 -80 -100 -120 -140 7544-35.EPS 0 1 2 3 4 5 The IIR2 and IIR3 filter (band-pass filter) files are the following : FFFF 3D88 4D18 0B58 CBE8 A000 0000 0000 0000 0CE0 C9A8 A000 B5A0 0000 0000 37E0 E000 A000 B7E8 5278 0020 3C88 E000 0000 B940 46E0 0238 E000 0000 BEB8 4210 0F98 1690 0000 B6A0 4278 0E68 D520 A000 (Thousands) FREQUENCY We have S/N = 84.43 dB. The band noise is double because of analog loop-back ,so if we want to calculate the dynamic range of the ST7544 ,we add 3dB to the S/N. S/N = 84.43+3 = 87.43 dB at Signal = -6.13dBr S/N = 87.43 + 6.13 = 93.56dB = DYNAMIC S/N = 6.02 * Nbit + 1.76 Nbit = (93.56-1.76)/6.02 = 15.25 bits 17/28 ST7544 - UNIVERSAL ANALOG FRONT-END III - INTERFACING ST7544 WITH DSP56000 (MOTOROLA) You will find below a suggested interface of our ST7544 with DSP56000 series from Motorola. We use the ST7544 in single SSI. The different connection are as following : Figure 16 ST7544 DSP56000 The DSP56000 control register bit has to be configured as following : Figure 17 SYN GCK SCKD SCD2 FSL WL1-WL0 DC4-DC0 Bit Set to 1 Bit Set to 0 Bit Set to 0 Bit Set to 0 Bit Set to 1 Bits Set to 10 Bits Set to X Synchronous Mode Continuous Clock External Source Clock SCK Set to Input Mode Frame Sync Length Equal 1 Bit Word Length Set to 16 bits Number of Timeslot (4, 5) And you have to program the DSP in Network mode. 18/28 7544-47.EPS 7544-46.EPS Bit Clock Frame Clock Transmit Data Receive Data Output Output Output Input BCLKX FSX TxDI TxDO SCK SC2 SRD STD Serial Bit Clock Frame Sync Receive Data Transmit Data Input Output Output Output ST7544 - UNIVERSAL ANALOG FRONT-END ANNEXE 1 : Demoboard Schematics Figure 18 C12 680pF TXA2 1 TXA2 1 R4 R6 15k 6 15k U3B OP270 C14 1F TX J5 5+ 7 TXA1 1 TXA1 1 R5 R7 15k 15k C13 680pF +1 2V VCM 3 U3A OP270 1 8 + 4 -12V +1 2V 2 U5B OP270 R13 1.2k R10 5k 5 6 R9 5k U4A OP270 1 8 + 3 2 RXA1 1 RXA1 1 7 + 4 -12V R12 5k C15 3.3nF R19 1.2k R11 5k R20 1.2k R18 1.2 k R14 5k +12V U5A OP270 1 4 -12V R17 5k 8 3 2 RXA2 1 RXA2 1 + R15 5k U4B OP270 + 5 RCV 6 J4 - R16 5k 7 - R8 100k +12V +12V DECOUPLING U2 U4 CD102 CD2 10F 100nF CD2 0 2 1 0 0 nF DECOUPLING U3 U5 CD 4 CD104 100nF 10F CD204 100nF CD304 10F 7544-36.EPS CD302 10F -12V -12V 19/28 ST7544 - UNIVERSAL ANALOG FRONT-END Figure 19 R25 22k C12 100pF TXA1 2 TXA1 2 R21 13.2k VCM C20 680nF 3 TXA2 2 TXA2 2 R22 13.2k R24 22k 2 R23 22k 6 - U6B TL072 7 R29 300 C23 220nF TP30 TP29 TP26 TP27 F1 LINE 5+ +12V R27 40k R30 300 C24 220nF R28 40k 8 + 4 -12V U6A TL072 1 C22 R26 22k 100pF +12V RXA1 2 RXA1 2 R31 1.2k U7A TL072 1 8 + 3 2 R33 20k - 4 R36 20k -12V R37 20k C19 47nF R38 20k R39 20k TXA2 2 RXA2 2 R32 1.2k +12V 8 7 - 6 R34 20k U7B TL072 +5 4 DECOUPLING U6 U7 CD6 CD106 100nF 10F CD206 100nF CD306 10F 7544-37.EPS -12V 20/28 P1 TXA2 1 TXA2 1 TXA2 1 2 BCLKR W3 TP1 3 4 FSR 5 BFRS 6 RXDO TXA2 2 TXA2 2 RXA2 1 RXA2 1 TXA1 1 TXA1 1 Figure 20 7 8 TXCLK TP2 9 TXA1 W5 10 BCLKX SSIM RXA2 C18 2.2nF TXA1 2 TXA1 2 1nF C16 RXA2 2 CD1 100nF 11 12 FSX 13 RXA2 2 VCM C17 2.2nF W6 14 DV DD RX A1 1 RXA1 1 TXDO 15 16 RX CLK CD101 47F TP3 R40 10k W4 R41 10k 17 18 RXDI 19 20 TXDI BCLKR RXA1 21 22 TP20 TP4 FSR AVDD CD601 RXA1 2 23 24 SSIM 25 RxDO 26 BFRS TP5 DV DD CD701 100nF DV DD RXA1 2 27 28 RXRCLK 29 30 TXRCLK NOT TP6 RxDI S3 10 F 31 32 TP21 TP7 TxDI R43 10k R42 10k WIRED VCM of R2 and R3 Double implantation 33 34 TP22 CD801 100nF 6 5 4 3 2 1 44 43 42 41 40 CD901 10 F 35 36 TP23 AV DD V CM TP8 TxDO 37 38 TP24 RxDI TxA2 SSIM TxA1 RxDO BCLKR DGND1 HE10 20X2 TP10 DD1 DV BFRS FSX FSR 39 40 NRESET TP9 R3 1.5k AGNDT U2 TLE2425 BCLKX 7 8 9 TxDO TxDI 39 FSX AV DD 37 BCLKX EYEY RxA1 TxOCLK (TEST2) J1 EYEY VCM 38 R2 1.5k CD201 100nF CD301 47F 10 11 12 DGND2 AGNDR RxA2 36 35 34 DV DD EYEX VCC C1 100nF J2 13 DV DD2 TP11 14 EYEX V REFN 32 15 16 RxCLK RxCLK U1 ST7544 V REFP 33 S5 S6 S7 AV DD TP12 C2 10 F 1 6 27 F2 RxHSCLK TP13 17 RxSYNC RxOCLK 31 EOCMODE 30 NLPR C3 100nF Y0T : A Y1T : B IDT : C RxHSCLK RxRCLK C29 C28 TxRCLK TxSYNC TxSCLK XTAL10 DGND3 XTAL11 RxSYNC DVDD3 TxHSCLK +5VD 47F XTAL2 100nF DV DD 29 C4 10F 3 TXOCLK TXSYNC 13 TxCLK TP25 TP26 TXHSCLK 14 RXHSCLK 16 27 28 S2 DV DD Y0R : A C26 W1 TP14 18 19 20 21 22 23 24 25 C27 47F RxRCLK TP15 100nF 26 4 RXOCLK RXSYNC 15 S4 TxRCLK TP16 VCC Y1R : B Q1 DV DD IDR : C S1 S8 25.8048MHz U8 2 S9 ALTERA1 5 S10 28 CD8 C30 47F 100nF TxSYNC TP17 F4 TxHSCLK TP18 +12V oscillo Q1 TP19 R44 10k NRESET VCC -12V CD401 100nF DV DD CD501 47F TxCLK C10 F3 47F C8 47 F C11 C9 100nF 100nF 36.864MHz C5 10pF J3 TxSCLK R1 50 C6 10pF Q2 C7 10pF 36.864MHz overtone L1 1.5 H C31 100pF ST7544 - UNIVERSAL ANALOG FRONT-END 21/28 7544-38.EPS ST7544 - UNIVERSAL ANALOG FRONT-END ANNEXE 2 : Layout Figure 21 LINE F1 APPLI2 R11 TX C13 C12 R7 R5 C14 R12 J5 APPLI1 R23 C21 R25 CD204 C20 U5 U3 R29 R30 + CD104 C23 C24 R27 R33 R34 R28 R10 R14 CD4 R15 R9 U6 CD205 R21 R22 R26 R24 R36 U4 R37 R39 C22 + R8 19 R13 R32 R31 20 CD2 CD302 + U2 J4 R18 CD901 D N R3 R2 CD W6 W5 801 C3 W3 W4 RCV + CD + 51 L14 C31 C7 U8 TXSCLK A2 A1 C2 CD601 J1 C1 + C4 R1 U9 1 A B C 2 J3 -21V +12V U1 CD501 + CD101 C5 Q1 C6 W1 RXMIT RCV A B C C9 + TP25 TP19 1 10 12 13 AD 15 17 0 C TP25 +5 R43 R44 CD8 + 10 2 8 4 6 TP1 14 16 18 23 21 22 TP24 TP20 11 R24 P1 C29 C27 C28 C26 R41 1 F2 EYEX R40 5 7 9 3 4 +SVD +SVA C1 AGND J2 + + F3 F4 EYEY 53 52 Q2 + C8 R C30 5 A CD305 C19 R38 + CD102 CD202 CD6 ST 7544 APPLICATION BOARD CD304 CD105 U7 R4 R17 R16 R5 + 22/28 7544-39.EPS ST7544 - UNIVERSAL ANALOG FRONT-END Figure 22 : Layer 1 - Components Side 23/28 7544-40.TIF ST7544 - UNIVERSAL ANALOG FRONT-END Figure 23 : Layer 1 24/28 7544-41.TIF ST7544 - UNIVERSAL ANALOG FRONT-END Figure 24 : Layer 2 - GNDD, AGND 25/28 7544-42.TIF ST7544 - UNIVERSAL ANALOG FRONT-END Figure 25 : Layer 3 - DVDD, AVDD 26/28 7544-43.TIF ST7544 - UNIVERSAL ANALOG FRONT-END Figure 26 : Layer 4 27/28 7544-44.TIF ST7544 - UNIVERSAL ANALOG FRONT-END Figure 27 : Layer 4 28/28 7544-45.TIF Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. (c) 1995 SGS-THOMSON Microelectronics - All Rights Reserved Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard Specifications as defined by Philips. SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. |
Price & Availability of ST7544
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |