![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HUF75332G3, HUF75332P3, HUF75332S3S Data Sheet June 1999 File Number 4489.3 60A, 55V, 0.019 Ohm, N-Channel UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFETTM process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Formerly developmental type TA75332. Features * 60A, 55V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Models - SPICE and SABER Thermal Impedance Models Available on the WEB at: www.intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards" Symbol D Ordering Information PART NUMBER HUF75332G3 HUF75332P3 HUF75332S3S PACKAGE TO-247 TO-220AB TO-263AB BRAND 75332G 75332P 75332S S G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75332S3ST. Packaging JEDEC STYLE TO-247 SOURCE DRAIN GATE DRAIN (FLANGE) JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (TAB) JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE 94 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999 HUF75332G3, HUF75332P3, HUF75332S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified 55 55 20 60 Figure 4 Figures 6, 14, 15 145 0.97 -55 to 175 300 260 UNITS V V V A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg W W/oC oC oC oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS ID = 250A, VGS = 0V (Figure 11) VDS = 50V, VGS = 0V VDS = 45V, VGS = 0V, TC = 150oC 55 - - 1 250 100 V A A nA Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient IGSS VGS = 20V VGS(TH) rDS(ON) VGS = VDS, ID = 250A (Figure 10) ID = 60A, VGS = 10V (Figure 9) 2 - 0.016 4 0.019 V RJC RJA (Figure 3) TO-247 TO-220, TO-263 - - 1.03 30 62 oC/W oC/W oC/W SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Reverse Transfer Capacitance Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 30V, ID 60A, RL = 0.50 Ig(REF) = 1.0mA (Figure 13) 70 40 2.5 6 15 85 50 3.0 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 30V, ID 60A, RL = 0.50, VGS = 10V, RGS = 6.8 12 55 11 25 100 55 ns ns ns ns ns ns 95 HUF75332G3, HUF75332P3, HUF75332S3S Electrical Specifications PARAMETER CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 1300 480 115 pF pF pF TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR ISD = 60A ISD = 60A, dISD/dt = 100A/s ISD = 60A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 75 140 UNITS V ns nC Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 60 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) 80 40 20 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 10-1 100 101 0.01 10-5 SINGLE PULSE 10-4 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 96 HUF75332G3, HUF75332P3, HUF75332S3S Typical Performance Curves 1000 (Continued) TC = 25oC IDM, PEAK CURRENT (A) FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 50 10-5 FIGURE 4. PEAK CURRENT CAPABILITY 500 500 IAS, AVALANCHE CURRENT (A) TJ = MAX RATED TC = 25oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID, DRAIN CURRENT (A) 100 100s 100 o STARTING TJTJ 2525oC STARTING = = C 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS(MAX) = 55V 1 1 10 1ms STARTING TJ = 150oC 10ms 100 200 10 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 10 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 150 150 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 25oC ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 120 VGS = 20V VGS = 10V VGS = 7V 120 -55oC 90 175oC 90 VGS = 6V 60 VGS = 5V 30 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1.5 3.0 4.5 6.0 VDS, DRAIN TO SOURCE VOLTAGE (V) 7.5 60 30 VDD = 15V 0 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 7.5 0 FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARACTERISTICS 97 HUF75332G3, HUF75332P3, HUF75332S3S Typical Performance Curves 2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 60A 2.0 (Continued) 1.2 VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.0 1.5 0.8 1.0 0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) 0.6 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A 2000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGD CISS 1000 1.1 1.0 C, CAPACITANCE (pF) 1500 500 COSS CRSS 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) 0 0 10 20 30 40 50 60 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 8 6 4 2 VDD = 30V 0 0 10 20 30 WAVEFORMS IN DESCENDING ORDER: ID = 60A ID = 45A ID = 30A ID = 15A 40 50 60 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 98 HUF75332G3, HUF75332P3, HUF75332S3S Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01 0 tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS RL VDD VDS VGS = 20V VGS + Qg(TOT) Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V DUT IG(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM VDS tON td(ON) RL VDS + tOFF td(OFF) tr tf 90% 90% VGS DUT RGS VDD 0 10% 90% 10% VGS VGS 0 10% 50% PULSE WIDTH 50% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS 99 HUF75332G3, HUF75332P3, HUF75332S3S PSPICE Electrical Model .SUBCKT HUF75332 2 1 3 ; CA 12 8 1.8e-9 CB 15 14 1.73e-9 CIN 6 8 1.19e-9 10 rev 17 February 1999 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 EBREAK 11 7 17 18 58.85 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 1e-9 LSOURCE 3 7 1e-9 K1 LSOURCE LGATE 0.0085 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.5e-3 RGATE 9 20 1.3 RLDRAIN 2 5 10 RLGATE 1 9 10 RLSOURCE 3 7 10 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 5.95e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD GATE 1 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6 RLGATE CIN MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3 S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17 - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),4.6))} .MODEL DBODYMOD D (IS = 1.3e-12 RS = 3.0e-3 IKF = 20 XTI = 6 TRS1 = 2.7e-3 TRS2 = 7.0e-7 CJO = 1.7e-9 TT = 4.0e-8 M = 0.45 vj = 0.75) .MODEL DBREAKMOD D (RS = 1.71e-2 IKF = 1.0e-5 TRS1 = -4.0e-4 TRS2 = -1.55e-5) .MODEL DPLCAPMOD D (CJO = 1.8e-9 IS = 1e-30 N = 1 M = 0.9 vj = 1.45) .MODEL MMEDMOD NMOS (VTO = 3.183 KP = 2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.3) .MODEL MSTROMOD NMOS (VTO = 3.66 KP = 51.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.703 KP = 0.008 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 13) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 4.5e-7) .MODEL RDRAINMOD RES (TC1 = 1.16e-2 TC2 = 1.7e-5) .MODEL RSLCMOD RES (TC1 = 3.96e-3 TC2 = 2.7e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-5) .MODEL RVTHRESMOD RES (TC1 = -2.8e-3 TC2 = -1.0e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 5.0e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -8 VOFF= -3) VON = -3 VOFF= -8) VON = 0 VOFF= 0.5) VON = 0.5 VOFF= 0) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 100 + DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD - RDRAIN 21 16 DBODY MWEAK MMED RBREAK 18 RVTEMP 19 VBAT + 8 22 RVTHRES HUF75332G3, HUF75332P3, HUF75332S3S SABER Electrical Model REV 17 February 1999 template huf75332 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 1.3e-12, xti = 6, cjo = 1.7e-9, tt = 4.0e-8, m = 0.45, vj = 0.75) d..model dbreakmod = () DPLCAP d..model dplcapmod = (cjo = 1.8e-9, is = 1e-30, m = 0.9, vj = 1.45) m..model mmedmod = (type=_n, vto = 3.183, kp = 2, is = 1e-30, tox = 1) 10 m..model mstrongmod = (type=_n, vto = 3.66, kp = 51.5, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.703, kp = 8.0e-3, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -8, voff = -3) RSLC2 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -8) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0) c.ca n12 n8 = 1.8e-9 c.cb n15 n14 = 1.73e-9 c.cin n6 n8 = 1.19e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 LGATE GATE 1 RLGATE CIN LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51 ISCL 50 ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8 RDRAIN 21 16 DBODY - LSOURCE 7 RLSOURCE l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 1.0e-9 l.lsource n3 n7 = 1.0e-9 k.kl i (l.lgate) i (l.lsource) = l (l.lgate), l (l.lsource), 0.0085 12 SOURCE 3 RSOURCE S1A 13 8 S1B CA 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 4.5e-7 res.rdbody n71 n5 = 3.0e-3, tc1 = 2.7e-3, tc2 = 7.0e-7 res.rdbreak n72 n5 = 1.71e-2, tc1 = -4.0e-4, tc2 = -1.55e-5 res.rdrain n50 n16 = 4.5e-3, tc1 = 1.16e-2, tc2 = 1.7e-5 res.rgate n9 n20 = 1.3 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10 res.rlsource n3 n7 = 10 res.rslc1 n5 n51 = 1e-6, tc1 = 3.96e-3, tc2 = 2.7e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.95e-3, tc1 = 1e-3, tc2 = 1e-5 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 5.0e-7 res.rvthres n22 n8 = 1, tc1 = -2.8e-3, tc2 = -1.0e-5 spe.ebreak n11 n7 n17 n18 = 58.85 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 VBAT + - - 8 RVTHRES 22 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 4.6)) } } 101 HUF75332G3, HUF75332P3, HUF75332S3S SPICE Thermal Model REV 11February 1999 HUF75332 CTHERM1 th 6 4.00e-3 CTHERM2 6 5 7.00e-3 CTHERM3 5 4 7.50e-3 CTHERM4 4 3 8.00e-3 CTHERM5 3 2 1.85e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 7.09e-3 RTHERM2 6 5 1.77e-2 RTHERM3 5 4 4.97e-2 RTHERM4 4 3 2.79e-1 RTHERM5 3 2 4.21e-1 RTHERM6 2 tl 5.58e-2 th JUNCTION RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model HUF75332 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.00e-3 ctherm.ctherm2 6 5 = 7.00e-3 ctherm.ctherm3 5 4 = 7.50e-3 ctherm.ctherm4 4 3 = 8.00e-3 ctherm.ctherm5 3 2 = 1.85e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 7.09e-3 rtherm.rtherm2 6 5 = 1.77e-2 rtherm.rtherm3 5 4 = 4.97e-2 rtherm.rtherm4 4 3 = 2.79e-1 rtherm.rtherm5 3 2 = 4.21e-1 rtherm.rtherm6 2 tl = 5.58e-2 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 102 HUF75332G3, HUF75332P3, HUF75332S3S Data Sheet June 1999 File Number 4489.3 60A, 55V, 0.019 Ohm, N-Channel UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFETTM process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Formerly developmental type TA75332. Features * 60A, 55V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Models - SPICE and SABER Thermal Impedance Models Available on the WEB at: www.intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards" Symbol D Ordering Information PART NUMBER HUF75332G3 HUF75332P3 HUF75332S3S PACKAGE TO-247 TO-220AB TO-263AB BRAND 75332G 75332P 75332S S G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75332S3ST. Packaging JEDEC STYLE TO-247 SOURCE DRAIN GATE DRAIN (FLANGE) JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (TAB) JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE 94 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999 HUF75332G3, HUF75332P3, HUF75332S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified 55 55 20 60 Figure 4 Figures 6, 14, 15 145 0.97 -55 to 175 300 260 UNITS V V V A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg W W/oC oC oC oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS ID = 250A, VGS = 0V (Figure 11) VDS = 50V, VGS = 0V VDS = 45V, VGS = 0V, TC = 150oC 55 - - 1 250 100 V A A nA Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient IGSS VGS = 20V VGS(TH) rDS(ON) VGS = VDS, ID = 250A (Figure 10) ID = 60A, VGS = 10V (Figure 9) 2 - 0.016 4 0.019 V RJC RJA (Figure 3) TO-247 TO-220, TO-263 - - 1.03 30 62 oC/W oC/W oC/W SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Reverse Transfer Capacitance Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 30V, ID 60A, RL = 0.50 Ig(REF) = 1.0mA (Figure 13) 70 40 2.5 6 15 85 50 3.0 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 30V, ID 60A, RL = 0.50, VGS = 10V, RGS = 6.8 12 55 11 25 100 55 ns ns ns ns ns ns 95 HUF75332G3, HUF75332P3, HUF75332S3S Electrical Specifications PARAMETER CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 1300 480 115 pF pF pF TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR ISD = 60A ISD = 60A, dISD/dt = 100A/s ISD = 60A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 75 140 UNITS V ns nC Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 60 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) 80 40 20 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 10-1 100 101 0.01 10-5 SINGLE PULSE 10-4 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 96 HUF75332G3, HUF75332P3, HUF75332S3S Typical Performance Curves 1000 (Continued) TC = 25oC IDM, PEAK CURRENT (A) FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 50 10-5 FIGURE 4. PEAK CURRENT CAPABILITY 500 500 IAS, AVALANCHE CURRENT (A) TJ = MAX RATED TC = 25oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID, DRAIN CURRENT (A) 100 100s 100 o STARTING TJTJ 2525oC STARTING = = C 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS(MAX) = 55V 1 1 10 1ms STARTING TJ = 150oC 10ms 100 200 10 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 10 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 150 150 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 25oC ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 120 VGS = 20V VGS = 10V VGS = 7V 120 -55oC 90 175oC 90 VGS = 6V 60 VGS = 5V 30 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1.5 3.0 4.5 6.0 VDS, DRAIN TO SOURCE VOLTAGE (V) 7.5 60 30 VDD = 15V 0 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 7.5 0 FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARACTERISTICS 97 HUF75332G3, HUF75332P3, HUF75332S3S Typical Performance Curves 2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 60A 2.0 (Continued) 1.2 VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.0 1.5 0.8 1.0 0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) 0.6 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A 2000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGD CISS 1000 1.1 1.0 C, CAPACITANCE (pF) 1500 500 COSS CRSS 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) 0 0 10 20 30 40 50 60 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 8 6 4 2 VDD = 30V 0 0 10 20 30 WAVEFORMS IN DESCENDING ORDER: ID = 60A ID = 45A ID = 30A ID = 15A 40 50 60 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 98 HUF75332G3, HUF75332P3, HUF75332S3S Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01 0 tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS RL VDD VDS VGS = 20V VGS + Qg(TOT) Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V DUT IG(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM VDS tON td(ON) RL VDS + tOFF td(OFF) tr tf 90% 90% VGS DUT RGS VDD 0 10% 90% 10% VGS VGS 0 10% 50% PULSE WIDTH 50% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS 99 HUF75332G3, HUF75332P3, HUF75332S3S PSPICE Electrical Model .SUBCKT HUF75332 2 1 3 ; CA 12 8 1.8e-9 CB 15 14 1.73e-9 CIN 6 8 1.19e-9 10 rev 17 February 1999 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 EBREAK 11 7 17 18 58.85 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 1e-9 LSOURCE 3 7 1e-9 K1 LSOURCE LGATE 0.0085 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.5e-3 RGATE 9 20 1.3 RLDRAIN 2 5 10 RLGATE 1 9 10 RLSOURCE 3 7 10 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 5.95e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD GATE 1 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6 RLGATE CIN MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3 S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17 - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),4.6))} .MODEL DBODYMOD D (IS = 1.3e-12 RS = 3.0e-3 IKF = 20 XTI = 6 TRS1 = 2.7e-3 TRS2 = 7.0e-7 CJO = 1.7e-9 TT = 4.0e-8 M = 0.45 vj = 0.75) .MODEL DBREAKMOD D (RS = 1.71e-2 IKF = 1.0e-5 TRS1 = -4.0e-4 TRS2 = -1.55e-5) .MODEL DPLCAPMOD D (CJO = 1.8e-9 IS = 1e-30 N = 1 M = 0.9 vj = 1.45) .MODEL MMEDMOD NMOS (VTO = 3.183 KP = 2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.3) .MODEL MSTROMOD NMOS (VTO = 3.66 KP = 51.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.703 KP = 0.008 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 13) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 4.5e-7) .MODEL RDRAINMOD RES (TC1 = 1.16e-2 TC2 = 1.7e-5) .MODEL RSLCMOD RES (TC1 = 3.96e-3 TC2 = 2.7e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-5) .MODEL RVTHRESMOD RES (TC1 = -2.8e-3 TC2 = -1.0e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 5.0e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -8 VOFF= -3) VON = -3 VOFF= -8) VON = 0 VOFF= 0.5) VON = 0.5 VOFF= 0) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 100 + DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD - RDRAIN 21 16 DBODY MWEAK MMED RBREAK 18 RVTEMP 19 VBAT + 8 22 RVTHRES HUF75332G3, HUF75332P3, HUF75332S3S SABER Electrical Model REV 17 February 1999 template huf75332 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 1.3e-12, xti = 6, cjo = 1.7e-9, tt = 4.0e-8, m = 0.45, vj = 0.75) d..model dbreakmod = () DPLCAP d..model dplcapmod = (cjo = 1.8e-9, is = 1e-30, m = 0.9, vj = 1.45) m..model mmedmod = (type=_n, vto = 3.183, kp = 2, is = 1e-30, tox = 1) 10 m..model mstrongmod = (type=_n, vto = 3.66, kp = 51.5, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.703, kp = 8.0e-3, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -8, voff = -3) RSLC2 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -8) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0) c.ca n12 n8 = 1.8e-9 c.cb n15 n14 = 1.73e-9 c.cin n6 n8 = 1.19e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 LGATE GATE 1 RLGATE CIN LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51 ISCL 50 ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8 RDRAIN 21 16 DBODY - LSOURCE 7 RLSOURCE l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 1.0e-9 l.lsource n3 n7 = 1.0e-9 k.kl i (l.lgate) i (l.lsource) = l (l.lgate), l (l.lsource), 0.0085 12 SOURCE 3 RSOURCE S1A 13 8 S1B CA 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 4.5e-7 res.rdbody n71 n5 = 3.0e-3, tc1 = 2.7e-3, tc2 = 7.0e-7 res.rdbreak n72 n5 = 1.71e-2, tc1 = -4.0e-4, tc2 = -1.55e-5 res.rdrain n50 n16 = 4.5e-3, tc1 = 1.16e-2, tc2 = 1.7e-5 res.rgate n9 n20 = 1.3 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10 res.rlsource n3 n7 = 10 res.rslc1 n5 n51 = 1e-6, tc1 = 3.96e-3, tc2 = 2.7e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.95e-3, tc1 = 1e-3, tc2 = 1e-5 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 5.0e-7 res.rvthres n22 n8 = 1, tc1 = -2.8e-3, tc2 = -1.0e-5 spe.ebreak n11 n7 n17 n18 = 58.85 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 VBAT + - - 8 RVTHRES 22 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 4.6)) } } 101 HUF75332G3, HUF75332P3, HUF75332S3S SPICE Thermal Model REV 11February 1999 HUF75332 CTHERM1 th 6 4.00e-3 CTHERM2 6 5 7.00e-3 CTHERM3 5 4 7.50e-3 CTHERM4 4 3 8.00e-3 CTHERM5 3 2 1.85e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 7.09e-3 RTHERM2 6 5 1.77e-2 RTHERM3 5 4 4.97e-2 RTHERM4 4 3 2.79e-1 RTHERM5 3 2 4.21e-1 RTHERM6 2 tl 5.58e-2 th JUNCTION RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model HUF75332 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.00e-3 ctherm.ctherm2 6 5 = 7.00e-3 ctherm.ctherm3 5 4 = 7.50e-3 ctherm.ctherm4 4 3 = 8.00e-3 ctherm.ctherm5 3 2 = 1.85e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 7.09e-3 rtherm.rtherm2 6 5 = 1.77e-2 rtherm.rtherm3 5 4 = 4.97e-2 rtherm.rtherm4 4 3 = 2.79e-1 rtherm.rtherm5 3 2 = 4.21e-1 rtherm.rtherm6 2 tl = 5.58e-2 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 102 |
Price & Availability of HUF75332S3S
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |