![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD- 94599A IRGIB15B60KD1 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features * Low VCE (on) Non Punch Through IGBT Technology. * Low Diode VF. * 10s Short Circuit Capability. * Square RBSOA. * Ultrasoft Diode Reverse Recovery Characteristics. * Positive VCE (on) Temperature Coefficient. * Maximum Junction Temperature Rated at 175C G E C VCES = 600V IC = 12A, TC=100C tsc > 10s, TJ=150C Benefits * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.80V Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VISOL VGE PD @ TC = 25C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current TO-220 Full-Pak Max. 600 19 12 A 38 38 19 12 38 2500 20 52 26 -55 to +175 C 300 (0.063 in. (1.6mm) from case) 10 lbf.in (1.1N.m) W V Units V c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature for 10 sec. Mounting Torque, 6-32 or M3 Screw PD @ TC = 100C Maximum Power Dissipation Thermal / Mechanical Characteristics Parameter RJC RJC RCS RJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. --- --- --- --- --- Typ. --- --- 0.50 --- 2.0 Max. 2.9 4.6 --- 62 --- Units C/W g www.irf.com 1 2/27/04 IRGIB15B60KD1 Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units -- 0.32 1.80 2.05 2.10 4.5 -10 10 1.0 163 829 1.69 1.31 1.25 -- Conditions Ref.Fig. V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- -- VCE(on) Collector-to-Emitter Voltage -- -- VGE(th) Gate Threshold Voltage 3.5 VGE(th)/TJ Threshold Voltage temp. coefficient -- gfe Forward Transconductance -- -- ICES Zero Gate Voltage Collector Current -- -- VFM Diode Forward Voltage Drop -- -- -- IGES Gate-to-Emitter Leakage Current -- -- V VGE = 0V, IC = 500A -- V/C VGE = 0V, IC = 1mA (25C-150C) IC = 15A, VGE = 15V, TJ = 25C 2.20 2.50 V IC = 15A, VGE = 15V, TJ = 150C IC = 15A, VGE = 15V, TJ = 175C 2.60 5.5 V VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 1mA (25C-150C) -- S VCE = 50V, IC = 15A, PW = 80s VGE = 0V, VCE = 600V 150 500 A VGE = 0V, VCE = 600V, TJ = 150C VGE = 0V, VCE = 600V, TJ = 175C 1800 2.30 V IF = 15A, VGE = 0V IF = 15A, VGE = 0V, TJ = 150C 1.75 IF = 15A, VGE = 0V, TJ = 175C 1.65 100 nA VGE = 20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Min. Typ. Max. Units -- 56 84 -- 7.0 10 -- 26 39 -- 127 140 -- 334 422 -- 461 556 -- 30 39 -- 25 35 -- 173 188 -- 41 53 -- 258 282 -- 570 646 -- 829 915 -- 30 39 -- 25 35 -- 194 207 -- 56 73 -- 7.5 -- -- 850 1275 -- 100 150 -- 32 48 FULL SQUARE 10 -- -- -- -- -- -- 140 267 67 23 984 -- -- 347 87 30 1279 nC Conditions IC = 15A VCC = 400V VGE = 15V IC = 15A, VCC = 400V VGE = 15V, RG = 22, L = 1.07mH Ls= 150nH, TJ = 25C IC = 15A, VCC = 400V VGE = 15V, RG = 22, L = 1.07mH Ls= 150nH, TJ = 25C Ref.Fig. 23 CT1 CT4 J d ns CT4 J ns IC = 15A, VCC = 400V VGE = 15V, RG = 22, L = 1.07mH Ls= 150nH, TJ = 150C IC = 15A, VCC = 400V VGE = 15V, RG = 22, L = 1.07mH Ls= 150nH, TJ = 150C CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 d nH pF Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150C, IC = 38A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 22 TJ = 150C, Vp = 600V, RG = 22 VCC=360V,VGE = +15V to 0V TJ = 150C VCC = 400V, IF = 15A, L = 1.07mH VGE = 15V, RG = 22 di/dt = 875A/s 22 4 CT2 CT3 WF4 WF4 17,18,19 20,21 CT4,WF3 s A J ns A nC Vcc =80% (VCES), VGE = 20V, L =100H, RG = 22. Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGIB15B60KD1 20 55 50 16 45 40 Ptot (W) 12 IC (A) 35 30 25 20 15 8 4 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (C) 0 0 20 40 60 80 100 120 140 160 180 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 s 10 IC (A) 100 s 1 1ms IC A) 10000 10 DC 0.1 1 10 100 VCE (V) 1000 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25C; TJ 150C Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V www.irf.com 3 IRGIB15B60KD1 20 18 16 14 ICE (A) 20 18 16 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 14 ICE (A) 12 10 8 6 4 2 0 0 2 12 10 8 6 4 2 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 4 VCE (V) 6 0 2 VCE (V) 4 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 60s Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 60s 20 18 16 14 ICE (A) 70 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 50 IF (A) -40C 25C 150C 12 10 8 6 4 2 0 0 2 40 30 20 10 0 4 VCE (V) 6 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 60s Fig. 8 - Typ. Diode Forward Characteristics tp = 60s 4 www.irf.com IRGIB15B60KD1 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 7.5A ICE = 15A ICE = 30A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 7.5A ICE = 15A ICE = 30A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40C Fig. 10 - Typical VCE vs. VGE TJ = 25C 20 18 16 14 VCE (V) 70 60 50 ICE (A) T J = 25C T J = 150C 12 10 8 6 4 2 0 5 10 ICE = 7.5A ICE = 15A ICE = 30A 40 30 20 T J = 150C 10 0 T J = 25C 0 5 VGE (V) 10 15 15 VGE (V) 20 Fig. 11 - Typical VCE vs. VGE TJ = 150C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s www.irf.com 5 IRGIB15B60KD1 1400 1200 tdOFF Swiching Time (ns) 1000 1000 Energy (J) 800 600 400 200 0 0 5 10 15 IC (A) EOFF EON 100 tF tdON 10 tR 20 25 30 1 0 5 10 15 20 25 30 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L=1.07mH; VCE= 400V RG= 22; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L=1.07mH; VCE= 400V RG= 22; VGE= 15V 1200 10000 1000 EOFF 800 Swiching Time (ns) EON 1000 Energy (J) 600 tdOFF 400 100 200 tF tdON tR 10 0 50 100 150 200 0 0 50 100 150 200 RG () RG () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L=1.07mH; VCE= 400V ICE= 15A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L=1.07mH; VCE= 400V ICE= 15A; VGE= 15V 6 www.irf.com IRGIB15B60KD1 25 24 RG = 22 20 20 RG = 47 IRR (A) 16 RG = 100 10 IRR (A) 25 30 15 12 RG = 200 5 8 4 0 0 5 10 15 20 0 0 40 80 120 160 200 IF (A) RG () Fig. 17 - Typical Diode IRR vs. IF TJ = 150C Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 15A 24 1500 30A 20 16 1000 Q RR (nC) 15A 7.5A IRR (A) 12 8 500 200 100 47 22 4 0 0 200 400 600 800 1000 0 0 200 400 600 800 1000 diF /dt (A/s) diF /dt (A/s) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 15A; TJ = 150C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C www.irf.com 7 IRGIB15B60KD1 200 160 Energy (J) 120 200 80 100 47 22 40 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150C 10000 16 14 300V 12 Cies 400V Capacitance (pF) 1000 10 VGE (V) 8 6 100 Coes 4 Cres 2 0 0 20 40 60 80 100 10 0 20 40 60 80 VCE (V) Q G, Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 15A; L = 2500H 8 www.irf.com IRGIB15B60KD1 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 0.02 0.01 0.01 Ri (C/W) i (sec) 0.437 0.000542 1.087 1.376 0.127526 2.702 1 2 Ci= i/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 J R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 C 2 3 4 4 Ri (C/W) 0.8631 0.6432 1.1937 1.9013 i (sec) 0.000202 0.001053 0.055415 2.335 0.1 0.02 0.01 1 0.01 Ci= i/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB15B60KD1 L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB15B60KD1 600 500 400 90% ICE 30 25 20 800 700 TEST CURRENT 40 35 tr 30 25 90% test current tf 600 500 VCE (V) VCE (V) ICE (A) 300 200 100 0 15 10 5 0 Eoff Loss 5% V CE 5% ICE 300 200 100 0 Eon Loss -100 0.2 0.4 time (s) 0.6 10% test current 5% V CE 15 10 5 0 -5 -100 0.1 0.3 -5 0.7 0.5 time(s) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 100 0 QRR -100 t RR -200 -300 VF (V) -400 -500 -600 -700 -800 -900 0.10 Peak IRR 10% Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 450 400 350 300 400 350 300 250 20 15 10 5 VCE (V) -5 -10 -15 -20 -25 -30 0.50 200 150 100 50 0 0 10 20 30 40 50 150 100 50 0 -50 0.20 0.30 time (S) 0.40 Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 Time (uS) Fig. WF4- Typ. S.C Waveform @ TC = 150C using Fig. CT.3 www.irf.com 11 ICE (A) 0 IF (A) 250 200 ICE (A) 400 20 IRGIB15B60KD1 TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) o 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126) 4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 16.00 (.630) 15.80 (.622) 1.15 (.045) MIN. 1 2 3 NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D A 1.40 (.055) 3X 1.05 (.042) 2.54 (.100) 2X 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) M AM B 3X 0.48 (.019) 0.44 (.017) B 2.85 (.112) 2.65 (.104) MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information EXAMPLE: THIS IS AN IRFI840G WITH AS SEMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN THE AS S EMBLY LINE "K" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFI840G 924K 34 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K TO-220 FullPak packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04 12 www.irf.com |
Price & Availability of IRGIB15B60KD1
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |