Part Number Hot Search : 
07N90E LTC2341 6XS29D4 MB15E07L 3102A KMZ10 55C6V8 54FCT
Product Description
Full Text Search
 

To Download IL1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IL1/2/5
PHOTOTRANSISTOR OPTOCOUPLER
FEATURES * Current Transfer Ratio at IF=10 mA IL1, 20% Min. IL2, 100% Min. IL5, 50% Min. * High Collector-Emitter Voltage IL1 - BVCEO=50 V IL2, IL5 - BVCEO=70 V * Field-Effect Stable by TRansparent IOn Shield (TRIOS) * Double Molded Package Offers Isolation Test Voltage 5300 VACRMS * Underwriters Lab File #E52744 V * VDE Approval #0884 (Available with Option 1)
DE
Dimensions in inches (mm) Pin One ID 3 .248 (6.30) .256 (6.50) 4 5 6 2 1 Anode 1 Cathode 2 NC 3 6 Base 5 Collector 4 Emitter
.335 (8.50) .343 (8.70) .039 (1.00) Min. 4 typ. .018 (0.45) .022 (0.55) .300 (7.62) typ. .130 (3.30) .150 (3.81) 18 typ. .020 (.051) min. .031 (0.80) .035 (0.90) .100 (2.54) typ. .010 (.25) .014 (.35) .300 (7.62) .347 (8.82) .110 (2.79) .150 (3.81)
DESCRIPTION The IL1/2/5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The IL1/2/5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. These couplers can be used also to replace relays and transformers in many digital interface applications such as CRT modulation.
Maximum Ratings Emitter Reverse Voltage.................................................................................. 6 V Forward Current ............................................................................. 60 mA Surge Current .................................................................................. 2.5 A Power Dissipation ........................................................................ 100 mW Derate Linearly from 25C .................................................... 1.33 mW/C Detector Collector-Emitter Reverse Voltage IL1 ................................................................................................... 50 V IL2, IL5 ............................................................................................. 70 V Emitter-Base Reverse Voltage ............................................................. 7 V Collector-Base Reverse Voltage ........................................................ 70 V Collector Current ............................................................................ 50 mA Collector Current (t<1 ms) ............................................................ 400 mA Power Dissipation ........................................................................ 200 mW Derate Linearly from 25C ...................................................... 2.6 mW/C Package Package Power Dissipation ........................................................ 250 mW Derate Linearly from 25C ...................................................... 3.3 mW/C Isolation Test Voltage (between emitter and detector referred to standard climate 23C/50%RH, DIN 50014)5300 VACRMS Creepage..................................................................................min. 7 mm Clearance .................................................................................min. 7 mm Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1.........................................................175 Isolation Resistance VIO=500 V, TA=25C .........................................................................1012 VIO=500 V, TA=100C .......................................................................1011 Storage Temperature .................................................... -40C to +150C Operating Temperature................................................. -40C to +100C Junction Temperature ..................................................................... 100C Soldering Temperature (2 mm from case bottom).......................... 260C
See Appnote 45, "How to Use Optocoupler Normalized Curves."
5-1
This document was created with FrameMaker 4.0.4
Characteristics
Symbol Emitter Forward Voltage Breakdown Voltage Reverse Current Capacitance Thermal Resistance Junction to Lead Detector Capacitance CCE CCB CEB ICEO VCESAT VBE HFE HFESAT RTHJL 200 120 6.8 8.5 11 5 0.25 0.65 650 400 500 1800 600 V 50 pF pF pF nA VCE=5 V, f=1 MHz VCB=5 V, f=1 MHz VEB=5 V, f=1 MHz VCE=10 V ICE=1 mA, IB=20 A VCE=10 V, IB=20 A VCE=10 V, IB=20 A VCE=0.4 V, IB=20 A VF VBR IR CO RTHJL 6 1.25 30 0.01 40 750 10 1.65 V V A pF IF=60 mA IR=10 A VR=6 V VR=0 V, f=1 MHz Min Typ Max Unit Condition
C/W
Collector-Emitter Leakage Current Collector-Emitter Saturation Voltage Base-Emitter Voltage DC Forward Current Gain Saturated DC Forward Current Gain Thermal Resistance Junction to Lead Package Transfer Characteristics IL1 Saturated Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio (Collector-Base) IL2 Saturated Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio IL5 Saturated Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio (Collector-Emitter) Current Transfer Ratio Isolation and Insulation Common Mode Rejection Output High Common Mode Rejection Output Low Common Mode Coupling Capacitance Package Capacitance Insulation Resistance
C/W
CTRCESAT CTRCE CTRCB 20
75 80 0.25 300
% % %
IF=10 mA, VCE=0.4 V IF=10 mA, VCE=10 V IF=10 mA, VCB=9.3 V
CTRCESAT CTRCE CTRCB 100
170 200 0.25 500
% % %
IF=10 mA, VCE=0.4 V IF=10 mA, VCE=10 V IF=10 mA, VCB=9.3 V
CTRCESAT CTRCE CTRCB 50
100 130 0.25 400
% % %
IF=10 mA, VCE=0.4 V IF=10 mA, VCE=10 V IF=10 mA, VCB=9.3 V
CMH CML CCM CI-O RS
5000 5000 0.01 0.6 10+14
V/s V/s pF pF
VCM=50 VP-P, RL=1 k, IF=0 mA VCM=50 VP-P, RL=1 k, IF=10 mA
VI-O=0 V, f=1 MHz VI-O=500 V
IL1/2/5
5-2
SWITCHING TIMES Figure 1. Non-saturated switching timing
VCC=5 V IF=10 mA F=10 KHz DF=50% VO RL=75
Figure 3. Non-saturated switching timing
IF
tPHL V0 tPLH tS 50%
Figure 2. Saturated switching timing
VCC=5 V F=10 KHz DF=50% IF=10 mA RL VO
tD tR tF
Figure 4. Saturated switching timing IF
VO
tD tR tPLH VTH=1.5 V tF
tPHL Non-Saturated Switching Time Table-Typical
Characteristic Delay Rise Time Storage Fall Time Propagation H-L Propagation L-H Sym TD tR tS tF tPHL tPLH IL1 IF=20 mA 0.8 1.9 0.2 1.4 0.7 1.4 IL2 IF=5 mA 1.7 2.6 0.4 2.2 1.2 2.3 IL5 IF=10 mA 1.7 2.6 0.4 2.2 1.1 2.5 Unit s s s s s s VCC=5 V RL=75 Test Condition
tS
tp measured at 50% of output
Saturated Switching Time Table-Typical
Characteristic Delay Rise Time Storage Fall Time Propagation H-L Propagation L-H Sym TD tR tS tF tPHL tPLH IL1 IF=20 mA 0.8 1.2 7.4 7.6 1.6 8.6 IL2 IF=5 mA 1 2 5.4 13.5 5.4 7.4 IL5 IF=10 mA 1.7 7 4.6 20 2.6 7.2 Unit s s s s s s VCL=5.0 V VCE=0.4 RL=1 K VTH=1.5 V Test Condition
IL1/2/5
5-3
Figure 5. g Forward voltage versus forward current
1.4
VF - Forward Voltage - V
Figure 9. Normalized non-saturated and saturated CTR at TA=100C versus LED current
NCTR - Normalized CTR
1.5 Normalized to: Vce = 10V, IF = 10mA, Ta = 25C CTRce(sat) Vce = 0.4V
1.3 1.2 1.1 1.0 0.9 0.8 0.7 .1
Ta = -55C Ta = 25C
1.0
Ta = 100C
0.5 Ta = 100C NCTR(SAT) NCTR 0.0 .1 1 10 IF - LED Current - mA 100
1 10 IF - Forward Current - mA
100
NCTR - Normalized CTR
Ice - Collector Current - mA
Figure 6. Normalized non-saturated and saturated CTR at TA=25C versus LED current 1.5 Normalized to: Vce = 10V, IF = 10mA Ta = 25C 1.0 CTRce(sat) Vce = 0.4V
Figure 10. Collector-emitter current versus temperature and LED current
35 30 25 20 15 10 5 0 0 10 20 30 40 IF - LED Current - mA 50 60 25C 100C 70C 50C
0.5 NCTR(SAT) NCTR 0.0 .1 1 10 IF - LED Current - mA 100
Iceo - Collector-Emitter - nA
NCTR - Normalized CTR
Figure 7. Normalized non-saturated and saturated CTR at TA=50C versus LED current 1.5 Normalized to: Vce = 10V, IF = 10mA, Ta = 25C CTRce(sat) Vce = 0.4V
1.0 Ta = 50C
Figure 11. Collector-emitter leakage current versus temperature
10 10 5 4 WORST CASE Vce = 10V TYPICAL
10 3 10 2 10 1 10 0 10 -1 10 -2 -20
0.5 NCTR(SAT) NCTR 0.0 .1 1 10 IF - LED Current - mA 100
0 20 40 60 80 100 Ta - Ambient Temperature - C
Figure 8. Normalized non-saturated and saturated CTR at TA=70C versus LED current
1.5
Figure 12. Normalized CTRcb versus LED current and temperature
1.5
NCTR - Normalized CTR
NCTRcb - Normalized CTRcb
Normalized to: Vce = 10V, IF = 10mA Ta = 25C CTRce(sat) Vce = 0.4V
1.0
1.0
Normalized to: IF =10 mA Vcb = 9.3 V Ta = 25C
0.5 Ta = 70C NCTR(SAT) NCTR .1 1 10 IF - LED Current - mA 100
0.5
25C 50C 70C
0.0
0.0 .1 1 10 IF - LED Current - mA 100
IL1/2/5
5-4
Figure 13. Collector base photocurrent versus LED current
1000 Ta = 25C 100 10 1 .1 .01 .1 1 10 IF - LED Current - mA 100 Icb = 1.0357 *IF ^1.3631
Icb - Collector Base Photocurrent - A
NHFE(sat) - Normalized Saturated HFE
Figure 16. Normalized saturated HFE versus base current and temperature 1.5 Normalized to: Vce = 10V 70C 50C Ib = 20A 1.0 Ta = 25C 25C
-20C 0.5 Vce = 0.4V 0.0 1 10 100 Ib - Base Current - (A) 1000
Figure 14. Normalized photocurrent versus If and temperature
10 Normalized to: Normalized Photocurrent If = 10ma, Ta = 25C 1
Figure 17. Propagation delay versus collector load resistor
1000 tp - Propagatio Delay - s tpHL - Propagation Delay - s Ta = 25C, IF = 10mA Vcc = 5 V, Vth = 1.5 V tpHL 2.5
100
2.0
.1
NIB-Ta=-20C NIb,Ta=25C NIb,Ta=50C NIb,Ta=70C
10 tpLH 1
1.5
1.0 .1 1 10 RL - Collector Load Resistor - K 100
.01 .1
1 10 If -LED Current- mA
100
Table 15. Normalized non-saturated HFE versus base current and temperature
1.2 NHFE - Normalized HFE 70C 50C 1.0 0.8 0.6 0.4 1 10 100 Ib - Base Current - A 1000 25C -20C Normalized to: Ib = 20A Vce = 10 V Ta = 25C
IL1/2/5
5-5


▲Up To Search▲   

 
Price & Availability of IL1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X