![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
SGP30N60, Fast IGBT in NPT-technology * 75% lower Eoff compared to previous generation combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability SGB30N60 SGW30N60 C G E P-TO-220-3-1 (TO-220AB) P-TO-263-3-2 (D-PAK) P-TO-247-3-1 (TO-263AB) (TO-247AC) * Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP30N60 SGB30N60 SGW30N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Gate-emitter voltage Avalanche energy, single pulse IC = 30 A, VCC = 50 V, RGE = 25 , start at Tj = 25C Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature Tj , Tstg -55...+150 C 1) VCE 600V IC 30A VCE(sat) 2.5V Tj 150C Package TO-220AB TO-263AB TO-247AC Ordering Code Q67040-A4463 Q67041-A4713 Q67040-S4237 Symbol VCE IC Value 600 41 30 Unit V A ICpul s VGE EAS 112 112 20 165 V mJ tSC Ptot 10 250 s W VGE = 15V, VCC 600V, Tj 150C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02 SGP30N60, Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Thermal resistance, junction - ambient SMD version, device on PCB 1) SGB30N60 SGW30N60 Max. Value Unit Symbol Conditions RthJC RthJA RthJA TO-220AB TO-247AC TO-263AB 0.5 62 40 40 Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 30 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 70 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current 2) Symbol Conditions Value min. 600 1.7 3 Typ. 2.1 2.5 4 20 1600 150 92 140 7 13 300 max. 2.4 3.0 5 Unit V A 40 3000 100 1920 180 110 182 nC nH A nA S pF IGES gfs Ciss Coss Crss QGate LE IC(SC) V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 30 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =3 0 A V G E = 15 V T O - 22 0A B T O - 24 7A C V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 15 0 C Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02 1) 2 SGP30N60, Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G =11 , 1) L = 18 0 nH , 1) C = 90 0 pF Energy losses include "tail" and diode reverse recovery. Symbol Conditions SGB30N60 SGW30N60 Value min. typ. 44 34 291 58 0.64 0.65 1.29 max. 53 40 349 70 0.77 0.85 1.62 mJ Unit ns Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 1 , 1) L = 18 0 nH , 1) C = 90 0 pF Energy losses include "tail" and diode reverse recovery. 44 34 324 67 0.98 0.92 1.90 53 40 389 80 1.18 1.19 2.38 mJ ns Symbol Conditions Value min. typ. max. Unit 1) Leakage inductance L an d Stray capacity C due to dynamic test circuit in Figure E. 3 Jul-02 SGP30N60, 160A SGB30N60 SGW30N60 tp=4s 15s Ic 140A 120A 100A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 100A 80A TC=80C 60A 40A 20A 0A 10Hz TC=110C 10A 50s 200s 1ms 1A DC Ic 0.1A 1V 10V 100V 100Hz 1kHz 10kHz 100kHz 1000V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11) VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C) 300W 60A 250W 50A Limited by bond wire 200W IC, COLLECTOR CURRENT 50C 75C 100C 125C Ptot, POWER DISSIPATION 40A 150W 30A 100W 20A 50W 10A 0W 25C 0A 25C 50C 75C 100C 125C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C) TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C) 4 Jul-02 SGP30N60, 90A 80A 70A 90A 80A 70A SGB30N60 SGW30N60 IC, COLLECTOR CURRENT 60A 50A 40A 30A 20A 10A 0A 0V IC, COLLECTOR CURRENT VGE=20V 15V 13V 11V 9V 7V 5V 60A 50A 40A 30A 20A 10A 0A 0V VGE=20V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C) VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C) 90A 80A Tj=+25C -55C +150C VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 100A 4.0V 3.5V IC = 60A IC, COLLECTOR CURRENT 70A 60A 50A 40A 30A 20A 10A 0A 0V 3.0V 2.5V IC = 30A 2.0V 1.5V 2V 4V 6V 8V 10V 1.0V -50C 0C 50C 100C 150C VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SGP30N60, SGB30N60 SGW30N60 td(off) 1000ns 1000ns td(off) t, SWITCHING TIMES 100ns t, SWITCHING TIMES tf 100ns tf td(on) tr td(on) tr 10ns 10A 20A 30A 40A 50A 60A 10ns 0 10 20 30 40 IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 1000ns 5.5V VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max. td(off) t, SWITCHING TIMES 100ns tf tr td(on) min. 10ns 0C 50C 100C 150C -50C 0C 50C 100C 150C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11, Dynamic test circuit in Figure E) Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Jul-02 SGP30N60, SGB30N60 SGW30N60 5.0mJ 4.5mJ *) Eon and Ets include losses due to diode recovery. 4.0mJ Ets* 3.5mJ *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.0mJ 3.5mJ 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 10A 20A 30A 40A 50A 60A 70A Eon* Eoff 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 0 Eoff Eon* Ets* 10 20 30 40 IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 3.0mJ 10 K/W 0 2.5mJ ZthJC, TRANSIENT THERMAL IMPEDANCE *) Eon and Ets include losses due to diode recovery. D=0.5 -1 E, SWITCHING ENERGY LOSSES 0.2 0.1 0.05 0.02 10 K/W 2.0mJ Ets* 1.5mJ 10 K/W 0.01 -2 1.0mJ Eon* Eoff 10 K/W -3 R,(1/W) 0.3681 0.0938 0.0380 R1 , (s)= 0.0555 1.26*10-3 1.49*10-4 R2 0.5mJ single pulse C 1= 1/R 1 C 2= 2/R 2 0.0mJ 0C 50C 100C 150C 10 K/W 1s -4 10s 100s 1ms 10ms 100ms 1s Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11, Dynamic test circuit in Figure E) tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SGP30N60, 25V SGB30N60 SGW30N60 20V 120V 480V 1nF Ciss VGE, GATE-EMITTER VOLTAGE 15V C, CAPACITANCE Coss 100pF Crss 10V 5V 0V 0nC 50nC 100nC 150nC 200nC 10pF 0V 10V 20V 30V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A) VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 s 500A 20 s IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 12V 14V 16V 18V 20V tsc, SHORT CIRCUIT WITHSTAND TIME 15 s 10 s 5 s 0 s 10V 11V 12V 13V 14V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C) VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C) 8 Jul-02 SGP30N60, SGB30N60 SGW30N60 dimensions [mm] min max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min 0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374 [inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520 TO-220AB symbol A B C D E F G H K L M N P T 9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95 2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72 0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071 TO-263AB (D2Pak) symbol min A B C D E F G H K L M N P Q R S T U V W X Y Z 9.80 0.70 1.00 1.03 [mm] dimensions [inch] max 10.20 1.30 1.60 1.07 min 0.3858 0.0276 0.0394 0.0406 max 0.4016 0.0512 0.0630 0.0421 2.54 typ. 0.65 0.85 0.1 typ. 0.0256 0.0335 5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50 0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984 15 typ. 0.00 4.20 0.20 5.20 0.5906 typ. 0.0000 0.1654 0.0079 0.2047 8 max 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 3.00 0.60 8 max 0.0945 0.0157 0.1181 0.0236 0.4252 0.0453 0.2453 0.1811 0.3701 0.6358 9 Jul-02 SGP30N60, SGB30N60 SGW30N60 dimensions [mm] min max 5.28 2.51 2.29 1.32 2.06 3.18 min 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 [inch] max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252 TO-247AC symbol A B C D E F G H K L M N P Q 4.78 2.29 1.78 1.09 1.73 2.67 0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930 0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941 3.61 6.12 6.22 0.1421 0.2409 0.2449 10 Jul-02 SGP30N60, 1 Tj (t) p(t) SGB30N60 SGW30N60 2 r2 r1 n rn r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C =900pF. 11 Jul-02 SGP30N60, Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please! SGB30N60 SGW30N60 The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Jul-02 |
Price & Availability of Q67040-A4463
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |