![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95849 AUTOMOTIVE MOSFET IRLZ44Z IRLZ44ZS IRLZ44ZL HEXFET(R) Power MOSFET D Features Logic Level Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax VDSS = 55V G S RDS(on) = 13.5m ID = 51A Description Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB IRLZ44Z D2Pak IRLZ44ZS Max. 51 36 204 80 0.53 16 78 110 See Fig.12a, 12b, 15, 16 -55 to + 175 TO-262 IRLZ44ZL Units A W W/C V mJ A mJ C Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energyd Single Pulse Avalanche Energy Tested Value Avalanche CurrentA Repetitive Avalanche Energy h g Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance RJC RCS RJA RJA Junction-to-Case i 300 (1.6mm from case ) 10 lbfyin (1.1Nym) k Parameter Typ. Max. 1.87 --- 62 40 Units C/W Case-to-Sink, Flat Greased Surface Junction-to-Ambient ik ik --- 0.50 --- --- Junction-to-Ambient (PCB Mount) jk www.irf.com 1 3/2/04 IRLZ44Z/S/L Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Min. Typ. Max. Units 55 --- --- --- --- 1.0 27 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0.05 11 --- --- --- --- --- --- --- --- 24 7.5 12 14 160 25 42 4.5 7.5 1620 230 130 860 180 280 --- --- 13.5 20 22.5 3.0 --- 20 250 200 -200 36 --- --- --- --- --- --- --- --- --- --- --- --- --- --- V V/C m m m V V A nA Conditions VGS = 0V, ID = 250A Reference to 25C, ID = 1mA VGS = 10V, ID = 31A VGS = 5.0V, ID = 30A VGS = 4.5V, ID = 15A VDS = VGS, ID = 250A VDS = 25V, ID = 31A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125C VGS = 16V VGS = -16V ID = 31A VDS = 44V VGS = 5.0V VDD = 50V ID = 31A RG = 7.5 VGS = 5.0V D Between lead, VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. e e e Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance nC e e ns nH 6mm (0.25in.) from package G pF S and center of die contact VGS = 0V VDS = 25V = 1.0MHz VGS = 0V, VDS = 1.0V, = 1.0MHz VGS = 0V, VDS = 44V, = 1.0MHz VGS = 0V, VDS = 0V to 44V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units --- --- --- --- --- --- --- --- 21 16 51 A 204 1.3 32 24 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 31A, VGS = 0V TJ = 25C, IF = 31A, VDD = 28V di/dt = 100A/s e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRLZ44Z/S/L 1000 TOP VGS 15V 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 1000 TOP VGS 15V 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 100 BOTTOM ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 1 3.0V 60s PULSE WIDTH Tj = 25C 3.0V 60s PULSE WIDTH Tj = 175C 0.1 0.1 1 10 100 1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 60 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current () T J = 175C T J = 25C T J = 175C 100.0 40 T J = 25C 20 10.0 VDS = 20V 60s PULSE WIDTH 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 VDS = 10V 380s PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRLZ44Z/S/L 2500 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 12 VGS, Gate-to-Source Voltage (V) ID= 31A VDS= 44V VDS= 28V VDS= 11V 2000 10 8 6 4 2 0 C, Capacitance (pF) Ciss 1500 1000 500 Coss Crss 0 1 10 100 0 10 20 30 40 50 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100.0 T J = 175C 100 100sec 10 10.0 T J = 25C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-to-Drain Voltage (V) 1msec 1 Tc = 25C Tj = 175C Single Pulse 0.1 1 10 100 1000 VDS , Drain-toSource Voltage (V) 10msec Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRLZ44Z/S/L 60 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 50 ID = 30A VGS = 5.0V 2.0 ID , Drain Current (A) 40 30 1.5 20 1.0 10 0 25 50 75 100 125 150 175 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (C) T J , Junction Temperature (C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3 Ri (C/W) i (sec) 0.736 0.000345 0.687 0.449 0.00147 0.007058 1 2 0.01 Ci= i/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLZ44Z/S/L 320 EAS, Single Pulse Avalanche Energy (mJ) 15V VDS L DRIVER 240 ID 3.7A 5.7A BOTTOM 31A TOP RG VGS 20V D.U.T IAS tp + V - DD A 160 0.01 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 80 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS VG QGD VGS(th) Gate threshold Voltage (V) 3.0 2.5 Charge 2.0 ID = 250A Fig 13a. Basic Gate Charge Waveform 1.5 1.0 L VCC 0 DUT 1K 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRLZ44Z/S/L 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 100 EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 31A 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRLZ44Z/S/L D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt - - + RG * * * * di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET(R) Power MOSFETs VDS VGS RG 10V Pulse Width 1 s Duty Factor 0.1 % RD D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLZ44Z/S/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES: 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C For GB Production EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECT IFIER LOGO LOT CODE PART NUMBER DAT E CODE www.irf.com 9 D2Pak Package Outline Dimensions are shown in millimeters (inches) IRLZ44Z/S/L D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L PART NUMBER F530S DAT E CODE For GB Production T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 www.irf.com IRLZ44Z/S/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com 11 IRLZ44Z/S/L D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25C, L = 0.166mH This value determined from sample failure population. 100% RG = 25, IAS = 31A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is only applied to TO-220AB pakcage. Pulse width 1.0ms; duty cycle 2%. This is applied to D2Pak, when mounted on 1" square PCB (FR Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . R is measured at TJ approximately 90C Repetitive rating; pulse width limited by TO-220AB package is not recommended for Surface Mount Application. Notes: Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 3/04 12 www.irf.com |
Price & Availability of IRLZ44Z
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |