Part Number Hot Search : 
AQW282S LM78L08 D1400 SMAJ30C MC14559B RU60E25R DTC123JE 09081
Product Description
Full Text Search
 

To Download FDT461N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDT461N
April 2004
FDT461N
N-Channel Logic Level PowerTrench(R) MOSFET 100V, 0.4A, 2.5
Features
* rDS(ON) = 1.45 (Typ.), VGS = 4.5V, ID = 0.4A * Qg(tot) = 2.36nC (Typ.), VGS = 10V * Low Miller Charge * Low QRR Body Diode
Applications
* Servo Motor Load Control * DC-DC converters
DRAIN (FLANGE)
D
GATE DRAIN SOURCE
G D S
SOT-223
MOSFET Maximum Ratings TA = 25C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current ID Continuous (TA = 25oC, VGS = 10V, RJA= 110oC/W) Continuous (TA = 25oC, VGS = 4.5V, RJA= 110oC/W) Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature 0.54 0.4 Figure 4 6.3 1.13 9 -55 to 150 A A A mJ W mW/oC
oC
Ratings 100 20
Units V V
Thermal Characteristics
RJA RJA RJA Thermal Resistance Junction to Ambient SOT-223, Pad area = 0.171 in2 Thermal Resistance Junction to Ambient SOT-223, Pad area = 0.068 in
2
110 128 147
o o
C/W C/W
Thermal Resistance Junction to Ambient SOT-223, Pad area = 0.026 in2
oC/W
Package Marking and Ordering Information
Device Marking 461 Device FDT461N Package SOT-223 Reel Size 13" Tape Width 12mm Quantity 2500 units
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
Electrical Characteristics TA = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 80V VGS = 0V VGS = 20V TC = 125oC 100 1 250 100 V A nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250A ID = 0.54A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 0.4A, VGS = 4.5V ID = 0.54A, VGS = 10V, TJ = 150oC 0.8 1.40 1.45 2.80 2 2.0 2.5 4.0 V
Dynamic Characteristics
CISS COSS CRSS Qg(TOT) Qg(4.5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge at 10V Total Gate Charge at 4.5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge (VGS = 10V) VDD = 50V, ID = 0.54A VGS = 10V, RGS = 120 3 1.3 63 12 6.5 113 ns ns ns ns ns ns VDS = 25V, VGS = 0V, f = 1MHz VGS = 0V to 10V VGS = 0V to 4.5V VGS = 0V to 1V VDD = 50V ID = 0.54A Ig = 1.0mA 74 11 2.5 2.36 1.27 0.1 0.37 0.27 0.25 4.0 2.0 0.15 pF pF pF nC nC nC nC nC nC
Switching Characteristics
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 0.54A ISD = 0.3A ISD = 0.54A, dISD/dt = 100A/s ISD = 0.54A, dISD/dt = 100A/s 1.25 1.0 22 18 V V ns nC
Notes: 1: Starting TJ = 25C, L = 67mH, IAS = 0.43A.
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
Typical Characteristics TA = 25C unless otherwise noted
1.2 0.6
POWER DISSIPATION MULTIPLIER
1.0 ID, DRAIN CURRENT (A) VGS = 10V
0.8
0.4
0.6
VGS = 4.5V 0.2
0.4
0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC)
0 25 50 75 100 125 150 TA, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs Ambient Temperature
2 1 THERMAL IMPEDANCE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZJA, NORMALIZED
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA 10-3 10-2 10-1 100 101 102 103
SINGLE PULSE 0.01 10-5 10-4 t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A) TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 4.5V 150 - TA 125
1
0.4 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103
Figure 4. Peak Current Capability
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
Typical Characteristics TA = 25C unless otherwise noted
4 1.6 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 1.2
ID, DRAIN CURRENT (A)
1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON)
ID , DRAIN CURRENT (A)
1
100s
0.8
0.1
10ms
TJ = 175oC TJ = 25oC
0.4 TJ = -55oC
SINGLE PULSE TJ = MAX RATED TA = 25oC 0.01 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 120 0 1.5 2.0 2.5
3.0
3.5
VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area
1.6 VGS = 4.5V rDS(ON), DRAIN TO SOURCE ON RESISTANCE () VGS = 3V ID, DRAIN CURRENT (A) 1.2 2.5 3.0
Figure 6. Transfer Characteristics
PULSE DURATION = 80ms DUTY CYCLE = 0.5% MAX
ID = 0.54A 2.0
0.8 VGS = 2.5V 0.4
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TA = 25oC
1.5 ID = 0.2A 1.0
0 0 0.5 1.0 1.5 2.0 2.5 VDS , DRAIN TO SOURCE VOLTAGE (V) 3.0
2
3
4 5 6 7 8 VGS, GATE TO SOURCE VOLTAGE (V)
9
10
Figure 7. Saturation Characteristics
Figure 8. Drain to Source On Resistance vs Gate Voltage and Drain Current
1.2
2.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.5 NORMALIZED GATE THRESHOLD VOLTAGE
VGS = VDS, ID = 250A
1.0
1.0
0.8
VGS = 10V, ID = 0.54A 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature
Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
Typical Characteristics TA = 25C unless otherwise noted
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 200 100 ID = 250A 1.1 C, CAPACITANCE (pF) CISS = CGS + CGD
COSS CDS + CGD
10
1.0
CRSS = CGD VGS = 0V, f = 1MHz 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 1 0.1 1 10 100 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 50V 8
Figure 12. Capacitance vs Drain to Source Voltage
6 ID = 0.54A 4
2
0 0 0.5 1.0 1.5 2.0 2.5 Qg, GATE CHARGE (nC)
Figure 13. Gate Charge Waveforms for Constant Gate Current
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS
+
IAS 0.01 0 tAV
Figure 14. Unclamped Energy Test Circuit
Figure 15. Unclamped Energy Waveforms
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
Test Circuits and Waveforms (Continued)
VDS VDD L VGS VDS VGS = 10V
+
Qg(TOT)
Qg(4.5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 4.5V
DUT Ig(REF)
Figure 16. Gate Charge Test Circuit
Figure 17. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 18. Switching Time Test Circuit
Figure 19. Switching Time Waveforms
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
PSPICE Electrical Model
.SUBCKT FDT461N 2 1 3 ; rev January 2004 Ca 12 8 1.5e-10 Cb 15 14 1.1e-10 Cin 6 8 7.0e-11
10 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 DRAIN 2 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 21 16
RSLC2
ESG + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 6 8
It 8 17 1 Lgate 1 9 5.29e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 5.71e-9 RLgate 1 9 52.9 RLdrain 2 5 10 RLsource 3 7 57.1 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 0.9 Rgate 9 20 3.94 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 0.5 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*15),2.5))} .MODEL DbodyMOD D (IS=6.4E-11 RS=8.0e-3 IKF=0.9 TRS1=2.5e-3 TRS2=9.5e-6 + CJO=2.2e-11 M=0.52 TT=2.9e-8 XTI=0.1) .MODEL DbreakMOD D (RS=0.6 TRS1=1.4e-3 TRS2=-5.0e-5) .MODEL DplcapMOD D (CJO=3.9e-11 IS=1e-30 N=10 M=0.67) .MODEL MmedMOD NMOS (VTO=1.75 KP=1.2 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.94 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.03 KP=12 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.46 KP=0.02 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=39.4 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=1.0e-3 TC2=-8.8e-7) .MODEL RdrainMOD RES (TC1=7.0e-3 TC2=2.0e-5) .MODEL RSLCMOD RES (TC1=1.0e-3 TC2=9.0e-6) .MODEL RsourceMOD RES (TC1=4.8e-3 TC2=1.0e-6) .MODEL RvthresMOD RES (TC1=-9.0e-4 TC2=-7.0e-6) .MODEL RvtempMOD RES (TC1=-2.1e-3 TC2=1.8e-6) MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5.0 VOFF=-2.0) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-5.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.4 VOFF=0.3) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.4) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2004 Fairchild Semiconductor Corporation
-
Ebreak 11 7 17 18 109.7 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
5 51
+
Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD
DBODY
FDT461N Rev. A1
FDT461N
SABER Electrical Model
rev January 2004 template FDT461N n2,n1,n3 = m_temp number m_temp=25 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=6.4e-11,rs=8.0e-3,ikf=0.9,trs1=2.5e-3,trs2=9.5e-6,cjo=2.2e-11,m=0.52,tt=2.9e-8,xti=0.1) dp..model dbreakmod = (rs=0.6,trs1=1.4e-3,trs2=-5e-5) dp..model dplcapmod = (cjo=3.9e-11,isl=10e-30,nl=10,m=0.67) m..model mmedmod = (type=_n,vto=1.75,kp=1.2,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.03,kp=12,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.46,kp=0.02,is=1e-30, tox=1,rs=0.1) LDRAIN DPLCAP 5 sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5.0,voff=-2.0) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-5.0) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.4,voff=0.3) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.4) 51 c.ca n12 n8 = 1.5e-10 RSLC2 c.cb n15 n14 = 1.1e-10 ISCL c.cin n6 n8 = 7.0e-11 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 109.7 GATE 1 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1
12 LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11 DBODY
DRAIN 2
RLGATE
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE S1A 13 8 S1B CA 13 + EGS 6 8 EDS S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19
l.lgate n1 n9 = 5.29e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 5.71e-9 res.rlgate n1 n9 = 52.9 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 57.1
m.mmed n16 n6 n8 n8 = model=mmedmod, temp=m_temp, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, temp=m_temp, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, temp=m_temp, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=1.0e-3,tc2=-8.8e-7 res.rdrain n50 n16 = 0.9, tc1=7.0e-3,tc2=2.0e-5 res.rgate n9 n20 = 3.94 res.rslc1 n5 n51 = 1e-6, tc1=1.0e-3,tc2=9.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 0.5, tc1=4.8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-9.0e-4,tc2=-7.0e-6 res.rvtemp n18 n19 = 1, tc1=-2.1e-3,tc2=1.8e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/15))** 2.5)) } }
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
FDT461N
PSPICE Thermal Model
REV January 2004 FDT461N_JA Junction Ambient Copper Area= 1sq.in CTHERM1 Junction c2 3.0e-5 CTHERM2 c2 c3 3.2e-5 CTHERM3 c3 c4 2.0e-4 CTHERM4 c4 c5 9.6e-2 CTHERM5 c5 c6 8.9e-1 CTHERM6 c6 c7 9.1e-1 CTHERM7 c7 c8 9.3e-1 CTHERM8 c8 Ambient 7 RTHERM1 Junction c2 0.5 RTHERM2 c2 c3 6 RTHERM3 c3 c4 9 RTHERM4 c4 c5 10 RTHERM5 c5 c6 11 RTHERM6 c6 c7 12 RTHERM7 c7 c8 13 RTHERM8 c8 Ambient 16
th JUNCTION
RTHERM1 2
CTHERM1
RTHERM2 3
CTHERM2
RTHERM3 4
CTHERM3
SABER Thermal Model
SABER thermal model FDT461N Copper Area= 1sq.in template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th c2 = 3.0e-5 ctherm.ctherm2 c2 c3 = 3.2e-5 ctherm.ctherm3 c3 c4 = 2.0e-4 ctherm.ctherm4 c4 c5 = 9.6e-2 ctherm.ctherm5 c5 c6 = 8.9e-1 ctherm.ctherm6 c6 c7 = 9.1e-1 ctherm.ctherm7 c7 c8 = 9.3e-1 ctherm.ctherm8 c8 tl = 7 rtherm.rtherm1 th c2 = 0.5 rtherm.rtherm2 c2 c3 = 6 rtherm.rtherm3 c3 c4 = 9 rtherm.rtherm4 c4 c5 = 10 rtherm.rtherm5 c5 c6 = 11 rtherm.rtherm6 c6 c7 = 12 rtherm.rtherm7 c7 c8 = 13 rtherm.rtherm8 c8 tl = 16 }
RTHERM4 5
CTHERM4
RTHERM5 6
CTHERM5
RTHERM6 7
CTHERM6
RTHERM7 8
CTHERM7
RTHERM8
CTHERM8
tl
AMBIENT
(c)2004 Fairchild Semiconductor Corporation
FDT461N Rev. A1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACT Quiet SeriesTM ActiveArrayTM FAST BottomlessTM FASTrTM CoolFETTM FPSTM CROSSVOLTTM FRFETTM DOMETM GlobalOptoisolatorTM EcoSPARKTM GTOTM E2CMOSTM HiSeCTM EnSignaTM I2CTM FACTTM i-LoTM Across the board. Around the world.TM The Power Franchise Programmable Active DroopTM
DISCLAIMER
ImpliedDisconnectTM PACMANTM POPTM ISOPLANARTM Power247TM LittleFETTM MICROCOUPLERTM PowerSaverTM PowerTrench MicroFETTM QFET MicroPakTM QSTM MICROWIRETM QT OptoelectronicsTM MSXTM Quiet SeriesTM MSXProTM RapidConfigureTM OCXTM RapidConnectTM OCXProTM SILENT SWITCHER OPTOLOGIC SMART STARTTM OPTOPLANARTM
SPMTM StealthTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I10


▲Up To Search▲   

 
Price & Availability of FDT461N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X