Part Number Hot Search : 
29DL640E MDR2100 MA400A KBU4A04 LN39CPP PS20L CD4026 02722
Product Description
Full Text Search
 

To Download 1956 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 9.781
IRGP420U
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
G E C
UltraFast IGBT
VCES = 500V VCE(sat) 3.0V
@VGE = 15V, IC = 7.5A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.
TO -2 4 7 AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C I CM ILM VGE EARV PD @ T C = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
500 14 7.5 28 28 20 5.0 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
---------------------
Typ.
-----0.24 -----6 (0.21)
Max.
2.1 -----40 ------
Units
C/W g (oz)
IRGP420U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter Min. Collector-to-Emitter Breakdown Voltage 500 Emitter-to-Collector Breakdown Voltage 20 V(BR)CES /T J Temperature Coeff. of Breakdown Voltage---VCE(on) Collector-to-Emitter Saturation Voltage ---------VGE(th) Gate Threshold Voltage 3.0 V GE(th)/TJ Temperature Coeff. of Threshold Voltage ---gfe Forward Transconductance 1.2 Zero Gate Voltage Collector Current ---ICES ---IGES Gate-to-Emitter Leakage Current ---V(BR)CES V(BR)ECS Typ. ------0.47 2.4 3.1 2.7 ----10 2.0 ---------Max. Units Conditions ---V VGE = 0V, IC = 250A ---V VGE = 0V, IC = 1.0A ---- V/C VGE = 0V, IC = 1.0mA 3.0 IC = 7.5A VGE = 15V See Fig. 2, 5 ---V IC = 14A ---IC = 7.5A, TJ = 150C 5.5 VCE = VGE, IC = 250A ---- mV/C VCE = VGE, IC = 250A ---S VCE = 100V, IC = 7.5A 250 A VGE = 0V, VCE = 500V 1000 VGE = 0V, VCE = 500V, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets t d(on) tr t d(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ---------------------------------------------------------Typ. 15 3.7 6.5 28 11 72 96 0.13 0.08 0.21 26 12 120 140 0.35 13 330 47 5.9 Max. Units Conditions 23 IC = 7.5A 5.6 nC VCC = 400V See Fig. 8 9.8 VGE = 15V ---TJ = 25C ---ns IC = 7.5A, VCC = 400V 110 VGE = 15V, RG = 50 140 Energy losses include "tail" ------mJ See Fig. 9, 10, 11, 14 0.28 ---TJ = 150C, ---ns IC = 7.5A, VCC = 400V ---VGE = 15V, RG = 50 ---Energy losses include "tail" ---mJ See Fig. 10, 14 ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 --- = 1.0MHz
Notes:
Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature. ( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
Pulse width 5.0s,
single shot.
VCC=80%(VCES), VGE=20V, L=10H,
RG= 50, ( See fig. 13a )
Pulse width 80s; duty factor 0.1%.
IRGP420U
20
For both:
Triangular wave:
16
LOAD CURRENT (A)
Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified Power Dissipation = 15W
Clamp voltage: 80% of rated
12
Square wave: 60% of rated voltage
8
4
Ideal diodes
0 0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
100
100
I C, Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
10
T = 25C J TJ = 150C
TJ = 150C
10
1
TJ = 25C
0.1
1 1
VGE = 15V 20s PULSE WIDTH
10
0.01 5 10
VCC = 100V 5s PULSE WIDTH
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
IRGP420U
15
VGE = 15V
4.5
Maximum DC Collector Current (A)
VGE = 15V 80s PULSE WIDTH I C = 15A
VCE , Collector-to-Emitter Voltage (V)
4.0
12
3.5
9
3.0
6
2.5
I C = 7.5A
2.0
3
I C = 4.0A
1.5
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
T C , Case Temperature (C)
TC , Case Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
Thermal Response (Z thJC)
1
D = 0.50 0.20 0.10 0.05
P DM
0.1
0.02 0.01
t
SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty factor D = t 1 /t 2
1 t2
0.01 0.00001
2. Peak T = PDM x Z thJC + T C J
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRGP420U
700
C, Capacitance (pF)
500
Cies
400
C oes
300
VGE , Gate-to-Emitter Voltage (V)
100
600
V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc
20
VCE = 400V I C = 7.5A
16
12
8
200
Cres
100
4
0 1 10
0 0 4 8 12 16
V CE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.22
Total Switching Losses (mJ)
0.21
Total Switching Losses (mJ)
VCC VGE TC IC
= 400V = 15V = 25C = 7.5A
10
RG = 50 VGE = 15V VCC = 400V
1
0.20
IC = 15A I C = 7.5A
0.1
0.19
I C = 4.0A
0.18
0.17 20 30 40 50 60
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
R G , Gate Resistance ( )
W
TC , Case Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
IRGP420U
1.0
0.8
I C, Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG = 50 TC = 150C VCC = 400V VGE = 15V
1000
VGE = 20V GE TJ = 125C
100
0.6
10
0.4
SAFE OPERATING AREA
1
0.2
0.0 0 4 8 12 16
0.1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
15.90 ( .626) 15.30 ( .602)
-B-
3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M -A5.50 (.217)
-D-
5.30 ( .209) 4.70 ( .185) 2.50 (.089) 1.50 (.059)
4
NO TES: 1 DIMENSIO NS & T OLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIO NS ARE SHOW N MILLIMETE RS (INCHES). 4 CONFO RM S TO JEDEC OUTLINE T O-247AC.
20.30 (.800) 19.70 (.775) 1
2X
5.50 (.217) 4.50 (.177)
2
3
-C-
LEAD ASSIGNMENT S 1 - GAT E 2 - CO LLECTO R 3 - EMIT TER 4 - CO LLECTO R
*
14.80 (.583) 14.20 (.559)
2.40 (.094) 2.00 (.079) 2X
4.30 (.170) 3.70 (.145)
1.40 (.056) 3X 1.00 (.039) 0.25 ( .010) M 3.40 (.133) 3.00 (.118) 0.80 ( .031) 3X 0.40 ( .016) 2.60 (.102) 2.20 (.087)
* LO NGE R LEADED (20m m) VERS ION AVAILAB LE (TO-247AD)
TO ORDE R ADD "-E " SUFF IX TO PART NUMBER
5.45 (.215) 2X
CA
S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
IRGP420U
L 50V 1000V VC *
0 - 400V
D.U.T.
RL = 400V 4 X IC@25C
480F 960V
Q
R
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L Driver* 50V D.U.T. VC
Fig. 14a - Switching
Loss Test Circuit
* Driver same type as D.U.T., VC = 400V
Q
1000V
R
S
Q R
90%
S
VC 90%
10%
Fig. 14b - Switching Loss
Waveforms
t d(off)
10% I C 5% t d(on)
tr Eon Ets = (Eon +Eoff )
tf t=5s Eoff


▲Up To Search▲   

 
Price & Availability of 1956

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X