Part Number Hot Search : 
080CT AT847 6F877A BZY97C51 92BPCB P021A 36000 FMMT718
Product Description
Full Text Search
 

To Download 1965 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 9.1022
IRGPC20F
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve
G E C
Fast Speed IGBT
VCES = 600V VCE(sat) 2.8V
@VGE = 15V, IC = 9.0A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO -2 4 7 AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM VGE EARV PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
600 16 9.0 64 64 20 5.0 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-- -- -- --
Typ.
-- 0.24 -- 6 (0.21)
Max.
2.1 -- 40 --
Units
C/W g (oz)
IRGPC20F
Electrical Characteristics @ T J = 25C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 -- -- V V GE = 0V, IC = 250A Emitter-to-Collector Breakdown Voltage 20 -- -- V VGE = 0V, IC = 1.0A V (BR)CES/T J Temperature Coeff. of Breakdown Voltage-- 0.72 -- V/C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage -- 2.0 2.8 IC = 9.0A VGE = 15V VCE(on) See Fig. 2, 5 -- 2.6 -- V IC = 16A -- 2.3 -- IC = 9.0A, TJ = 150C Gate Threshold Voltage 3.0 -- 5.5 VCE = VGE, IC = 250A VGE(th) V GE(th)/T J Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = VGE, IC = 250A Forward Transconductance 2.9 5.1 -- S VCE = 100V, IC = 9.0A gfe Zero Gate Voltage Collector Current -- -- 250 A VGE = 0V, VCE = 600V ICES -- -- 1000 VGE = 0V, VCE = 600V, TJ = 150C Gate-to-Emitter Leakage Current -- -- 100 nA VGE = 20V IGES V(BR)CES V(BR)ECS
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets t d(on) tr t d(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. Max. Units Conditions 16 21 IC = 9.0A 2.4 3.4 nC VCC = 400V See Fig. 8 7.9 10 V GE = 15V 24 -- TJ = 25C 13 -- ns IC = 9.0A, VCC = 480V 160 270 VGE = 15V, RG = 50 310 600 Energy losses include "tail" 0.18 -- 0.90 -- mJ See Fig. 9, 10, 11, 14 1.08 2.0 25 -- TJ = 150C, 18 -- ns IC = 9.0A, VCC = 480V 210 -- VGE = 15V, RG = 50 600 -- Energy losses include "tail" 1.65 -- mJ See Fig. 10, 14 13 -- nH Measured 5mm from package 340 -- VGE = 0V 63 -- pF VCC = 30V See Fig. 7 5.9 -- = 1.0MHz
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature. ( See fig. 13b )
Repetitive rating; pulse width limited by maximum junction temperature. Pulse width 80s; duty factor
0.1%.
Pulse width 5.0s,
single shot.
VCC=80%(VCES), VGE=20V, L=10H,
RG= 50, ( See fig. 13a )
IRGPC20F
25
For both: Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified Power Dissipation = 15W
Triangular wave:
20
LOAD CURRENT (A)
Clamp voltage: 80% of rated
15
Square wave: 60% of rated voltage
10
5
Ideal diodes
0 0.01
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
100
100
I C , Collector-to-Emitter Current (A)
TJ = 25C TJ = 25C T = 150C J
I C , Collector-to-Emitter Current (A)
TJ = 150C
10
10
1
0.1 0.1
VGE = 15V 20s PULSE WIDTH
1 10
1 5 10
VCC = 100V 5s PULSE WIDTH
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig.
3
-
Typical Transfer acteristics
Char-
IRGPC20F
16
VCE , Collector-to-Emitter Voltage (V)
VGE = 15V
4.0
Maximum DC Collector Current (A)
VGE = 15V 80s PULSE WIDTH
IC = 18A
3.5
12
3.0
8
2.5
I C = 9.0A
2.0
4
I C = 4.5A
1.5
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature (C)
TC , Case Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 Voltage
Collector-to-Emitter vs. Case Temperature
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 0.05
P DM
0.1
0.02 0.01
t
SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty factor D = t 1 /t 2
1 t2
0.01 0.00001
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRGPC20F
700
VGE, Gate-to-Emitter Voltage (V)
100
600
V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = Cce + C gc
20
VCE = 400V I C = 9.0A
16
C, Capacitance (pF)
500
Cies C oes
400
12
300
8
200
Cres
4
100
0 1 10
0 0 4 8 12 16 20
V CE , Collector-to-Emitter Voltage (V)
Q g , Total Gate Charge (nC)
Fig. 7 Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.36
10
Total Switching Losses (mJ)
1.34
Total Switching Losses (mJ)
VCC VGE TC IC
= 480V = 15V = 25C = 9.0A
RG = 50 V GE = 15V V CC = 480V I C = 18A I C = 9.0A
1.32
1.30
1
I C = 4.5A
1.28
1.26
1.24 20 30 40 50 60
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
R G , Gate Resistance ( )
W
TC , Case Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig.
10
- Typical Switching Losses vs. Case Temperature
IRGPC20F
4.0
3.0
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG = 50 T C = 150C VCC = 480V VGE = 15V
100
VGE = 20V GE TJ = 125C
SAFE OPERATING AREA
10
2.0
1.0
0.0 4 8 12 16 20
1 1 10 100 1000
I C , Collector-to-Emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 Losses vs.
Typical Switching Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
15.90 ( .626) 15.30 ( .602)
-B-
3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M -A5.50 (.217)
-D-
5.30 ( .209) 4.70 ( .185) 2.50 (.089) 1.50 (.059)
4
NO TES: 1 DIMENSIO NS & T OLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIO NS ARE SHOW N MILLIMETE RS (INCHES). 4 CONFO RM S TO JEDEC OUTLINE T O-247AC.
20.30 (.800) 19.70 (.775) 1
2X
5.50 (.217) 4.50 (.177)
2
3
-C-
LEAD ASSIGNMENT S 1 - GAT E 2 - CO LLECTO R 3 - EMIT TER 4 - CO LLECTO R
*
14.80 (.583) 14.20 (.559)
2.40 (.094) 2.00 (.079) 2X
4.30 (.170) 3.70 (.145)
1.40 (.056) 3X 1.00 (.039) 0.25 ( .010) M 3.40 (.133) 3.00 (.118) 0.80 ( .031) 3X 0.40 ( .016) 2.60 (.102) 2.20 (.087)
* LO NGE R LEADED (20m m) VERS ION AVAILAB LE (TO-247AD)
TO ORDE R ADD "-E " SUFF IX TO PART NUMBER
5.45 (.215) 2X
CA
S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
IRGPC20F
L 50V 1000V VC *
0 480V
D.U.T.
RL V = 448 0 X IC@25C
480F 960V
Q
R
* Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.
Fig. 13a - Clamped Inductive Load Test Circuit
IC L Driver* 50V D.U.T. VC
Fig. 13b - Pulsed Collector Current Test Circuit
Fig. 14a - Switching
Loss Test Circuit
* Driver same type as D.U.T., VC = 480V
Q
1000V
R
S
Q R
90%
S
VC 90%
10%
Fig. 14b - Switching
Loss Waveforms
t d(off)
10% I C 5% t d(on)
tr Eon Ets = (Eon +Eoff )
tf t=5s Eoff


▲Up To Search▲   

 
Price & Availability of 1965

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X