Part Number Hot Search : 
60100 2SK2631 TLG359T 306AG D2200N M1000 PZU12B1 732R2425
Product Description
Full Text Search
 

To Download SCAS294G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
D D D D D D D
EPIC TM (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25C Inputs Accept Voltages to 5.5 V Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages
D, DB, OR PW PACKAGE (TOP VIEW)
A/B 1A 1B 1Y 2A 2B 2Y GND
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
VCC OE 4A 4B 4Y 3A 3B 3Y
description
This quadruple 2-line to 1-line data selector/multiplexer is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC257A is designed to multiplex signals from 4-bit data sources to 4-output data lines in bus-organized systems. The 3-state outputs do not load the data lines when the output-enable (OE) input is at a high logic level. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN74LVC257A is characterized for operation from -40C to 85C.
FUNCTION TABLE INPUTS OE H L L L L A/B X L L H H A X L H X X B X X X L H OUTPUT Y Z L H L H
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright (c) 1998, Texas Instruments Incorporated
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
1
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
logic symbol
OE A/B 1A 1B 2A 2B 3A 3B 4A 4B 15 1 2 3 5 6 11 10 14 13 9 EN G1 1 1 7 2Y MUX 4
1Y
3Y
12
4Y
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
OE 15
A/B
1
1A
2 4 3 1Y
1B
2A
5 7 6 2Y
2B
3A
11 9 10 3Y
3B
4A
14 12 13 4Y
4B
2
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 6.5 V Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA Package thermal impedance, JA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113C/W DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The value of VCC is provided in the recommended operating conditions table. 3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
MIN VCC Supply voltage Operating Data retention only VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V 0 0 VCC = 1.65 V VCC = 2.3 V VCC = 2.7 V VCC = 3 V VCC = 1.65 V VCC = 2.3 V VCC = 2.7 V VCC = 3 V 0 1.65 1.5 0.65 x VCC 1.7 2 0.35 x VCC 0.7 0.8 5.5 VCC -4 -8 -12 -24 4 8 12 24 10 ns/V mA V V V V MAX 3.6 UNIT V
VIH
High-level input voltage
VIL VI VO
Low-level input voltage Input voltage Output voltage
IOH
High-level High level output current
mA
IOL
Low-level Low level output current
t/v
Input transition rise or fall rate
TA Operating free-air temperature -40 85 C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
3
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER IOH = -100 A IOH = -4 mA VOH IOH = -8 mA IOH = -12 mA 12 IOH = -24 mA IOL = 100 A VOL IOL = 4 mA IOL = 8 mA IOL = 12 mA IOL = 24 mA II IOZ ICC ICC Ci VI = 5.5 V or GND VO = VCC or GND VI = VCC or GND, One input at VCC - 0.6 V, Other inputs at VCC or GND VI = VCC or GND IO = 0 TEST CONDITIONS VCC 1.65 V to 3.6 V 1.65 V 2.3 V 2.7 V 3V 3V 1.65 V to 3.6 V 1.65 V 2.3 V 2.7 V 3V 3.6 V 3.6 V 3.6 V 2.7 V to 3.6 V 3.3 V 3.3 V 5 5 MIN VCC-0.2 1.2 1.7 2.2 2.4 2.2 0.2 0.45 0.7 0.4 0.55 5 10 10 500 A A A A pF pF V V TYP MAX UNIT
Co VO = VCC or GND All typical values are at VCC = 3.3 V, TA = 25C.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)
PARAMETER FROM (INPUT) A or B A/B OE OE TO (OUTPUT) VCC = 1.8 V TYP 13.4 15.5 14.7 12.7 VCC = 2.5 V 0.2 V MIN 1 1 1 1 MAX 7.4 9.5 8.7 6.7 VCC = 2.7 V MIN MAX 5.4 7.5 6.7 4.7 VCC = 3.3 V 0.3 V MIN 1 1 1 1 MAX 4.6 6.4 5.6 4.3 1 ns ns ns ns UNIT
tpd d ten tdis tsk(o)
Y Y Y
Skew between any two outputs of the same package switching in the same direction
operating characteristics, TA = 25C
PARAMETER Cpd Power dissipation capacitance TEST CONDITIONS f = 10 MHz VCC = 1.8 V TYP 13.5 VCC = 2.5 V TYP 14.5 VCC = 3.3 V TYP 15.5 UNIT pF
4
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 0.15 V
2 x VCC From Output Under Test CL = 30 pF (see Note A) 1 k S1 Open GND 1 k TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC Open
LOAD CIRCUIT tw Timing Input tsu Data Input VCC/2 VCC VCC/2 0V th VCC VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) tPZL VCC Input VCC/2 tPLH VCC/2 0V tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 2 S1 at Open (see Note B) Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH VCC Input VCC/2 VOLTAGE WAVEFORMS PULSE DURATION VCC/2 0V
VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.15 V VOL tPHZ VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
VCC/2
NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
5
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V 0.2 V
2 x VCC From Output Under Test CL = 30 pF (see Note A) 500 S1 Open GND 500 TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 2 x VCC GND
LOAD CIRCUIT tw Timing Input tsu Data Input VCC/2 VCC VCC/2 0V th VCC VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) tPZL VCC Input VCC/2 tPLH VCC/2 0V tPHL VOH Output VCC/2 VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) Output Waveform 1 S1 at 2 x VCC (see Note B) tPZH VCC Input VCC/2 VOLTAGE WAVEFORMS PULSE DURATION VCC/2 0V
VCC VCC/2 VCC/2 0V tPLZ VCC VCC/2 VOL + 0.15 V VOL tPHZ VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
VCC/2
NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
SN74LVC257A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER WITH 3-STATE OUTPUTS
SCAS294G - JANUARY 1993 - REVISED OCTOBER 1998
PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V 0.3 V
6V From Output Under Test CL = 50 pF (see Note A) 500 S1 Open GND 500 TEST tpd tPLZ/tPZL tPHZ/tPZH S1 Open 6V GND
LOAD CIRCUIT
tw 2.7 V
Timing Input tsu Data Input 1.5 V
2.7 V 1.5 V 0V th 2.7 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES
Input
1.5 V
1.5 V 0V
VOLTAGE WAVEFORMS PULSE DURATION
Output Control (low-level enabling) tPZL Output Waveform 1 S1 at 6 V (see Note B) Output Waveform 2 S1 at GND (see Note B) tPZH
2.7 V 1.5 V 1.5 V 0V tPLZ 3V 1.5 V tPHZ VOH - 0.3 V VOH 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOL + 0.3 V VOL
2.7 V Input tPLH 1.5 V 1.5 V 0V tPHL VOH Output 1.5 V VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES 1.5 V VOL
1.5 V
NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
* DALLAS, TEXAS 75265
7
IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.
Copyright (c) 1998, Texas Instruments Incorporated


▲Up To Search▲   

 
Price & Availability of SCAS294G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X