![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
(R) September 1998 T DUC 105 PRO 0, HFA1 enter at ETE A112 C rt OL c OBS 100, HF al Suppo l.com/ts A1 echnic .intersi HF w See t our T r ww ntac ERSIL o co or -INT 1-888 HFA-0002 Low Noise Wideband Operational Amplifier Description The HFA-0002 is a very wideband, high slew rate, op amp, featuring precision DC characteristics. Stable in gains of 10 or greater this all bipolar op amp offers a combination of AC and DC performance never seen before in monolithic form. The high gain bandwidth product (1GHz) and high slew rate (250V/s) make this op amp ideal for use in video and RF circuits. The low offset voltage (0.6mV), low bias current (0.23A), and low voltage noise (2.7nV/Hz) specifications combined with the excellent AC characteristics make this op amp ideal for high speed data acquisition systems with high accuracy. Features * Wide Gain Bandwidth Product . . . . . . . . . . . . . . . 1GHz * High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 250V/s * High Open Loop Gain . . . . . . . . . . . . . . . . . . . .105V/mV * Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV * Low Power Consumption . . . . . . . . . . . . . . . . . . 143mW * Low Input Voltage Noise at 1kHz . . . . . . . . . .2.7nV/Hz * Monolithic Construction Applications * RF/IF Processors * Video Amplifiers * Radar Systems * Pulse Amplifiers * High Speed Communications * Fast Data Acquisition Systems Part Number Information PART NUMBER HFA2-0002-5 HFA2-0002-9 HFA3-0002-5 HFA3-0002-9 HFA7-0002-5 HFA7-0002-9 HFA9P0002-5 HFA9P0002-9 TEMPERATURE RANGE 0 C to +75 C -40oC 0oC o o o PACKAGE 8 Pin CAN 8 Pin CAN 8 Lead Plastic DIP 8 Lead Plastic DIP 8 Lead Ceramic Sidebraze DIP 8 Lead Ceramic Sidebraze DIP 8 Lead SOIC 8 Lead SOIC to +85oC to +75oC o -40 C to +85 C 0oC to +75oC +85oC o -40oC o to 0 C to +75 C -40oC to +85oC Pinouts HFA-0002 (PDIP, CDIP, SOIC) TOP VIEW HFA-0002 (TO-99 METAL CAN) TOP VIEW NC 8 BAL 1 - IN 2 +IN V3 4 + 8 NC 7 V+ 6 OUT 5 BAL +IN 3 BAL 1 - IN 2 + 7 V+ 6 OUT 5 BAL 4 V- CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright (c) Intersil Americas Inc. 2002. All Rights Reserved 2-608 File Number 2917.3 DB500 Specifications HFA-0002 Absolute Maximum Ratings (Note 1) Supply Voltage Between V+ and V-Terminals . . . . . . . . . . . . . . 12V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Junction Temperature (Note 10). . . . . . . . . . . . . . . . . . . . . . +175oC Junction Temperature (Plastic Package) . . . . . . . . . . . . . . . +150oC Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . +300oC Operating Conditions Operating Temperature Range : HFA-0002-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC TA +85oC HFA-0002-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC TA +75oC Storage Temperature Range . . . . . . . . . . . . . . -65oC TA 150oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified HFA-0002-5/-9 PARAMETER INPUT CHARACTERISTICS Offset Voltage TEMP +25oC Full MIN TYP MAX UNITS 2.5 - 0.6 1.2 2.0 0.23 0.1 0.32 0.12 0.16 1 2 1 2 1.0 1.0 2.0 1.0 1.0 - mV mV V/oC A A A A A V M pF Average Offset Voltage Drift Bias Current Full +25 oC High Low Offset Current +25oC Full Common Mode Range Differential Input Resistance Input Capacitance Input Noise Voltage 0.1Hz to 10Hz 10Hz to 1MHz Input Noise Voltage fO = 10Hz fO = 100Hz fO = 1000Hz Input Noise Current fO = 10Hz fO = 100Hz fO = 1000Hz TRANSFER CHARACTERISTICS Large Signal Voltage Gain (Note 2, 4) Common Mode Rejection Ratio (Note 3) Full +25oC Full Gain Bandwidth Product fO = 1MHz Minimum Stable Gain OUTPUT CHARACTERISTICS Output Voltage Swing (Note 4) Full Power Bandwidth (Note 5) Output Resistance, Open Loop Output Current TRANSIENT RESPONSE Full +25oC +25oC Full +25oC Full +25oC +25oC +25oC +25oC +25oC +25oC +25oC +25oC Full +25 oC +25oC - 5.1 2.02 - nV RMS VRMS nV/Hz nV/Hz nV/Hz - 8.9 3.7 2.7 - - 25 8.4 4.5 - pA/Hz pA/Hz pA/Hz 80 100 90 105 110 108 - V/mV dB dB 10 3.5 10.6 10 1 3.9 13.3 5 12 - GHz V/V - V MHz mA 2-609 Specifications HFA-0002 Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued) HFA-0002-5/-9 PARAMETER Rise Time (Note 4, 6) Slew Rate (Note 4, 7, 9) Settling Time (Note 4, 7) Overshoot (Note 4, 6) POWER SUPPLY CHARACTERISTICS Supply Current Power Supply Rejection Ratio (Note 8) NOTES: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. 2. VOUT = 3V. 3. VCM = 2V. Slew Rate = 3.0V . 5. Full Power Bandwidth is guaranteed by equation: FPBW = ----------------------- , V 2 V peak peak = 100mV, A = +10. 6. V OUT V TEMP +25 C +25oC +25oC +25oC o MIN 200 - TYP 3.2 250 50 30 MAX - UNITS ns V/s ns % Full Full 90 14 99 20 - mA dB 4. RL = 5K, C L = 20pF. 7. VOUT = 3V, AV = +10. 8. VS = 4V to 6V. 9. This parameter is not tested. This limit is guaranteed based on characterization and reflects lot to lot variation. 10. See Thermal Constants in "Applications Information" section. Maximum power dissipation, including output load, must be designed to maintain the junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages. Simplified Schematic Diagram +BAL BAL +V OUT +IN IN V Die Characteristics Thermal Constants (oC/W) CAN . . . . . . . . . . . . . . . . . . . . . . . . . PDIP . . . . . . . . . . . . . . . . . . . . . . . . CDIP . . . . . . . . . . . . . . . . . . . . . . . . SOIC . . . . . . . . . . . . . . . . . . . . . . . . JA 117 96 75 158 JC 36 34 13 43 2-610 HFA-0002 Test Circuits VIN 50 + VOUT 4.5k 20pF 500 FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT 0.3V 10mV IN 0V 0V -10mV -0.3V 3V 100mV OUT 0V OUT 0V -100mV IN -3V LARGE SIGNAL RESPONSE Input: 0.2V/Div. Output: 2V/Div. Horizontal Scale: 20ns/Div. SMALL SIGNAL RESPONSE Input: 10mV/Div. Output: 100mV/Div. VSETTLE 1K 10K * AV = -10 5K * Feedback and summing resistors must be matched (0.1%) * HP5082-2810 clipping diodes recommended + VOUT * Tektronix P6201 FET probe used at settling point 500 VIN FIGURE 3. SETTLING TIME SCHEMATIC 2-611 HFA-0002 Typical Performance Curves VS = 5V, TA = +25oC, Unless Otherwise Specified 120 100 GAIN (dB) GAIN (dB) 80 60 40 20 0 PHASE 180 135 90 45 0 AV = +10, RL = 5K, CL = 20pF 80 60 40 20 0 PHASE -20 0 45 90 135 180 GAIN PHASE SHIFT (DEGREES) PHASE SHIFT (DEGREES) GAIN PHASE MARGIN (DEGREES) 1K 10K 100K 1M 10M FREQUENCY (Hz) 100M 500M 1M 10M FREQUENCY (Hz) 100M 200M FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY 80 100 GAIN (dB) 80 PSRR (dB) +PSRR 60 40 20 0 -PSRR 60 40 20 0 -20 AV = +100, RL = 5K, CL = 20pF 0 45 90 135 180 100 1K 10K 100K 1M 10M 100M 1K 10K 100K 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 6. PSRR vs FREQUENCY FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY VOUT = 3V, RL = 5K, C L = 20pF 120 100 SLEW RATE (V/s) 80 CMRR (dB) 60 40 20 0 250 200 150 100 50 0 -60 300 100 1K 10K 100K 1M FREQUENCY (Hz) 10M 100M -40 -20 0 20 40 60 80 100 120 TEMPERATURE (oC) FIGURE 8. CMRR vs FREQUENCY FIGURE 9. SLEW RATE vs TEMPERATURE 2-612 HFA-0002 Typical Performance Curves 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -60 VS = 5V, TA = +25oC, Unless Otherwise Specified (Continued) 900 800 700 BIAS CURRENT (nA) 600 500 400 300 200 100 0 -60 -40 -20 0 20 40 60 80 100 120 OFFSET VOLTAGE (mV) -40 -20 0 20 40 60 TEMPERATURE (oC) 80 100 120 TEMPERATURE (oC) FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE 4 Representative Units 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -60 FIGURE 11. BIAS CURRENT vs TEMPERATURE -40 -20 0 20 40 60 80 100 120 200 190 RL = 5K, VOUT = 0 to 3V 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -60 -40 -20 0 20 OFFSET CURRENT (nA) GAIN (V/mV) 40 60 80 100 120 TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 12. OFFSET CURRENT vs TEMPERATURE 4 Representative Units FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE 2-613 HFA-0002 Typical Performance Curves 5.0 4.8 PEAK OUTPUT VOLTAGE (V) 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 -60 -40 -20 0 20 40 60 80 100 120 10 -60 -40 -20 0 20 40 60 80 100 120 OUTPUT CURRENT (mA) 14 RL = 5K VS = 5V, TA = +25oC, Unless Otherwise Specified (Continued) 15 VOUT = 3V 13 12 11 TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE 140 FIGURE 15. OUTPUT CURRENT vs TEMPERATURE 140 VCM = 0 to 3V VS = 4V to 6V 130 130 120 CMRR (dB) PSRR (dB) 120 +PSRR 110 -PSRR 100 110 100 90 90 -60 -40 -20 0 20 40 60 o 80 100 120 80 -60 -40 -20 0 20 40 60 o 80 100 120 TEMPERATURE ( C) TEMPERATURE ( C) FIGURE 16. CMRR vs TEMPERATURE FIGURE 17. PSRR vs TEMPERATURE 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2.0 16 15 SUPPLY CURRENT (mA) 2.4 2.8 3.2 3.6 4.0 4.4 4.8 SUPPLY CURRENT (mA) 14 13 12 11 10 -60 -40 -20 0 20 40 60 o 80 100 120 SUPPLY VOLTAGE (V) TEMPERATURE ( C) FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 19. SUPPLY CURRENT vs TEMPERATURE 2-614 HFA-0002 Typical Performance Curves 5 PEAK OUTPUT VOLTAGE SWING (V) AV = +10, RL = 5K VS = 5V, TA = +25oC, Unless Otherwise Specified (Continued) 200 180 OPEN LOOP GAIN (V/mV) VOUT = 3V 4 160 140 120 100 80 60 40 20 3 2 1 0 1M 10M 100M FREQUENCY (Hz) 1G 0 10 100 1K LOAD RESISTANCE () 10K FIGURE 20. OUTPUT VOLTAGE SWING vs FREQUENCY 5 PEAK OUTPUT VOLTAGE SWING (V) FIGURE 21. OPEN LOOP GAIN vs LOAD RESISTANCE 5 4 RISE TIME (ns) 10 100 1K 10K 4 3 3 2 2 1 1 0 0 -60 -40 -20 0 20 40 60 80 100 120 LOAD RESISTANCE () TEMPERATURE (oC) FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE 10 INPUT NOISE VOLTAGE (nV/Hz) 9 8 7 6 5 4 3 2 1 0 100 1K 10K FREQUENCY (Hz) NOISE VOLTAGE NOISE CURRENT 10 INPUT NOISE VOLTAGE (nV/Hz) INPUT NOISE CURRENT (pA/Hz) 9 8 7 6 5 4 3 2 1 0 100K 80 70 60 50 40 30 20 10 0 1 FIGURE 23. RISE TIME vs TEMPERATURE 80 INPUT NOISE CURRENT (pA/Hz) 70 60 50 40 NOISE CURRENT 30 20 NOISE VOLTAGE 10 100 1K 10K 10 0 100K FREQUENCY (Hz) FIGURE 24. INPUT NOISE vs FREQUENCY FIGURE 25. INPUT NOISE vs FREQUENCY 2-615 Typical Performance Curves VS = 5V, TA = +25oC, Unless Otherwise Specified (Continued) FIGURE 26. INPUT NOISE VOLTAGE 0.1Hz to 10Hz AV = 25,000, Noise Voltage = 3.31nVRMS (RTI) FIGURE 27. INPUT NOISE VOLTAGE 10Hz to 1MHz AV = 500, Noise Voltage = 2.02VRMS (RTI) 2-616 HFA-0002 Applications Information Offset Voltage Adjustment The HFA-0002, due to its low offset voltage, will typically not require any external offset adjustment. If certain applications do require lower offset, the following diagram shows one possible configuration. +5V and sometime take a long time to recover. By clamping the input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time for an input sine wave at 25% overdrive is 100ns. 20K 7 2 + 3 4 1 5 6 - 5V FIGURE 29. The power supply lines must be well decoupled to filter any power supply noise. A 20K trim pot will allow an offset adjustment of about 3mV, referred to input. PC Board Layout Guidelines When designing with the HFA-0002, good high frequency (RF) techniques should be used when doing pc board layouts. A massive ground plane should be used to maintain a low impedance ground. PC board traces should be kept as short as possible and kept wide to minimize trace inductance and impedance. Stray capacitance at the op amps output and at the high impedance inputs should be kept to a minimum, to prevent any unwanted phase shift and bandwidth limiting. When breadboarding remember to keep feedback resistor values low (5k) for optimum performance. The use of metal film resistors for values over 200 and carbon film resistors under 200 typically gives the best performance. Remember to keep all lead lengths as short as possible to minimize lead inductance. Sockets will add parasitic capacitance and inductance and therefore can limit AC performance as well as reduce stability. If sockets must be used, a low profile socket with minimum pin to pin capacitance will minimize any performance degradation. Power supply decoupling is essential for high frequency op amps. A 0.01F high quality ceramic capacitor at each supply pin in parallel with a 1F tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to the ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, again the lead lengths should be kept to a minimum. Saturation Recovery When an op amp is over driven output devices can saturate 2-617 |
Price & Availability of HFA3-0002-5
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |