Part Number Hot Search : 
ITMS4037 NV23KCS JANSR2N SIXPACK2 MZ780 SC16C654 4KB80 23C36
Product Description
Full Text Search
 

To Download MIG200J6CMB1W Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MIG200J6CMB1W
TOSHIBA Intelligent Power Module Silicon N Channel IGBT
MIG200J6CMB1W (600V/200A 6in1)
High Power Switching Applications Motor Control Applications
* * * * * * Integrates inverter and control circuits (IGBT drive units, and units for protection against short-circuit current, over-current, under-voltage and over-temperature) into a single package. The electrodes are isolated from the case Low thermal resistance VCE (sat) = 2.0 V (typ.) UL recognized: File No.E87989 Weight: 385 g (typ.)
Equivalent Circuit
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
FO IN VD GND
FO IN VD GND
FO IN VD GND
GND IN FO VD
GND IN FO VD
GND IN FO VD
GND
VS
OUT
GND
VS
OUT
GND
VS
OUT
GND
VS
OUT
GND
VS
OUT
GND
VS
OUT
W 1. 8. 15. VD (U) GND (V) Open 2. 9. 16. FO (U) VD (W) Open
V 3. 10. 17. IN (U) FO (W) IN (X) 4. 11. 18.
U GND (U) IN (W) IN (Y) 5. 12. 19. VD (V) GND (W) IN (Z) 6. 13. 20. FO (V) VD (L) GND (L)
N 7. 14. IN (V) FO (L)
P
1
2002-07-22
MIG200J6CMB1W
Package Dimensions: TOSHIBA 2-123A1A
Unit: mm
1. 7. 13. 19.
VD (U) IN (V) VD (L) IN (Z)
2. 8. 14. 20.
FO (U) GND (V) FO (L) GND (L)
3. 9. 15.
IN (U) VD (W) Open
4. 10. 16.
GND (U) FO (W) Open
5. 11. 17.
VD (V) IN (W) IN (X)
6. 12. 18.
FO (V) GND (W) IN (Y)
2
2002-07-22
MIG200J6CMB1W
Signal Terminal Layout
Unit: mm
1. 7. 13. 19.
VD (U) IN (V) VD (L) IN (Z)
2. 8. 14. 20.
FO (U) GND (V) FO (L) GND (L)
3. 9. 15.
IN (U) VD (W) Open
4. 10. 16.
GND (U) FO (W) Open
5. 11. 17.
VD (V) IN (W) IN (X)
6. 12. 18.
FO (V) GND (W) IN (Y)
3
2002-07-22
MIG200J6CMB1W
Maximum Ratings (Tj = 25C)
Stage Supply voltage Collector-emitter voltage Inverter Collector current Forward current Collector power dissipation Junction temperature Control supply voltage Input voltage Control Fault output voltage Fault output current Operating temperature Storage temperature Range Module Isolation voltage Screw torque AC 1 min M5 FO-GND Terminal FO sink current Tc = 25C, DC Tc = 25C, DC Tc = 25C, DC 3/4 VD-GND Terminal IN-GND Terminal Characteristics Condition P-N Power terminal 3/4 Symbol VCC VCES IC IF PC Tj VD VIN VFO IFO Rating 450 600 200 200 1000 150 20 20 20 10 -20~+100 -40~+125 2500 3 Unit V V A A W C V V V mA C C V N*m
3/4 3/4
Tc Tstg VISO 3/4
Electrical Characteristics
1. Inverter stage
Characteristics Collector cut-off current Symbol ICES Test Condition VCE = 600 V VD = 15 V, IC = 200 A, VIN = 15 V (R) 0 V Tj = 25C Tj = 125C Tj = 25C Tj = 125C Min 3/4 3/4 1.7 3/4 3/4 3/4 VCC = 300 V, IC = 200 A VD = 15 V, VIN = 3 V 0 V Tj = 25C, Inductive load (Note 1) 3/4 3/4 3/4 3/4 Typ. 3/4 3/4 2.0 2.2 2.2 2.0 0.4 0.2 1.3 0.2 Max 1 10 2.4 3/4 2.6 2.9 3/4 3/4 2.3 3/4 ms V V Unit mA
Collector-emitter saturation voltage Forward voltage
VCE (sat) VF ton tc (on)
IF = 200 A, Tj = 25C
Switching time
trr toff tc (off)
Note 1: Switching time test circuit & timing chart
4
2002-07-22
MIG200J6CMB1W
2. Control stage (Tj = 25C)
Characteristics Control circuit current Input on signal voltage Input off signal voltage Protection Fault output current Normal Over current protection trip level Inverter High side Low side Symbol ID (H) ID (L) VIN (on) VIN (off) IFO (on) IFO (off) OC SC toff (OC) Trip level Reset level Trip level Reset level OT Case temperature OTr UV UVr tFO VD = 15 V 3/4 VD = 15 V Test Condition Min 3/4 3/4 1.4 2.2 3/4 3/4 320 320 3/4 110 3/4 11.0 12.0 1 Typ. 13 39 1.6 2.5 10 3/4 3/4 3/4 5 118 98 12.0 12.5 2 Max 17 51 1.8 V 2.8 12 mA 0.1 3/4 3/4 3/4 125 3/4 12.5 V 13.0 3 ms C A A ms Unit mA
VD = 15 V
VD = 15 V VD = 15 V, Tj < 125C = VD = 15 V, Tj < 125C = VD = 15 V
Short circuit protection trip Inverter level Over current cut-off time Over temperature protection Control supply under voltage protection Fault output pulse width
3. Thermal resistance (Tc = 25C)
Characteristics Junction to case thermal resistance Case to fin thermal resistance Symbol Rth (j-c) Rth (c-f) IGBT FRD Compound is applied Test Condition Min 3/4 3/4 3/4 Typ. 3/4 3/4 0.013 Max 0.125 0.195 3/4 C/W Unit C/W
5
2002-07-22
MIG200J6CMB1W
Switching Time Test Circuit
Intelligent power module TLP559 VD 0.1 mF 15 kW OUT IN 15 V 47 mF GND VS P
GND U (V, W) VCC
VD IF = 16mA PG 15 V 47 mF GND 0.1 mF 15 kW OUT IN VS N
GND
Timing Chart
Input pulse 15 V VIN Waveform 0
2.5 V
1.6 V
90% Irr IC Waveform Irr 90% trr 20% Irr
VCE Waveform
10% toff
10% tc (off)
10% ton
10% tc (on)
6
2002-07-22
MIG200J6CMB1W
4. Recommended conditions for application
Characteristics Supply voltage Control supply voltage Carrier frequency Dead time (Note 2) Symbol VCC VD fc tdead Test Condition P-N Power terminal VD-GND Signal terminal PWM Control Switching time test circuit (See page.6) Min 3/4 13.5 3/4 4 Typ. 300 15 3/4 3/4 Max 400 16.5 20 3/4 Unit V V kHz ms
Note 2: The table lists Dead time requirements for the module input, excluding photocoupler delays. When specifying dead time requirements for the photocoupler input, please add photocoupler delays to the dead time given above.
Dead Time Timing Chart
15 V VIN Waveform 0 15 V VIN Waveform 0 tdead tdead
7
2002-07-22
MIG200J6CMB1W
IC - VCE
400 400
IC - VCE
VD = 17 V
VD = 17 V
13 V
(A)
300 15 V 200
(A)
15 V 300 13 V
IC
Collector current
Collector current
Common emitter Tj = 25C
IC
200 100
100
Common emitter Tj = 125C 4 0 0 1 2 3 4
0 0
1
2
3
Collector-emitter voltage
VCE
(V)
Collector-emitter voltage
VCE
(V)
Switching time - IC
10 10
Switching time - IC
(ms)
1
(ms)
ton toff
ton toff 1 tc (on)
Switching time
tc (on) tc (off) 0.1 Tj = 25C VCC = 300 V VD = 15 V L-LOAD 0.01 0 50 100 150 200 250
Switching time
tc (off) 0.1 Tj = 125C VCC = 300 V VD = 15 V L-LOAD 0.01 0 50 100 150 200 250
Collector current
IC
(A)
Collector current
IC
(A)
IF - VF
400 350 100
trr, Irr - IF
Peak reverse recovery current Irr (A) Reverse recovery time trr (10 ns)
Irr
(A) Forward current IF
300 250 200 150 100 Common cathode 50 0 0 : Tj = 25C : Tj = 125C 1 2 3 4
10
trr
Common cathode : Tj = 25C 1 0 : Tj = 125C 50 100 150 200 250
Forward voltage
VF
(V)
Forward current
IF
(A)
8
2002-07-22
MIG200J6CMB1W
OC - Tc
(mA)
600 50
ID (H) - fc
Over current protection trip level OC (A)
High side control circuit current ID (H)
500
40
400
30
300
20
200
100 VD = 15 V 0 0 25 50 75 100 125 150
10 VD = 15 V Tj = 25C 0 0 5 10 15 20 25
Case temperature Tc
(C)
Carrier frequency fc
(kHz)
ID (L) - fc
(mA)
120 400
Reverse bias SOA
Low side control circuit current ID (L)
100
OC
IC
240
80
60
Collector current
(A)
40 20 VD = 15 V Tj = 25C 0 0 5 10 15 20 25
320
160
80 VD = 15 V Tj < 125C = 0 0 100 200 300 400 500 600 700
Carrier frequency fc
(kHz)
Collector-emitter voltage
VCE
(V)
Rth (t) - tw Inverter stage
1
Transient thermal resistance Rth (t) (C/W)
Diode
0.1 Transistor
0.01
Tc = 25C 0.001 0.001 0.01 0.1 1 10
Pulse width
tw
(s)
9
2002-07-22
MIG200J6CMB1W
Turn on loss - IC
100 100
Turn off loss - IC
(mJ)
10
(mJ) Eoff
10
Turn on loss Eon
0.1
VCC = 300 V VD = 15 V L-LOAD : Tj = 25C : Tj = 125C
Turn off loss
1
1
0.1
VCC = 300 V VD = 15 V L-LOAD : Tj = 25C : Tj = 125C
0.01 0
50
100
150
200
250
0.01 0
50
100
150
200
250
Collector current
IC
(A)
Collector current
IC
(A)
10
2002-07-22
MIG200J6CMB1W
RESTRICTIONS ON PRODUCT USE
000707EAA
* TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. * The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. * The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. * The information contained herein is subject to change without notice.
11
2002-07-22


▲Up To Search▲   

 
Price & Availability of MIG200J6CMB1W

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X