![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
TDA7439 THREE BANDS DIGITALLY CONTROLLED AUDIO PROCESSOR 1 FEATURES INPUT MULTIPLEXER - 4 STEREO INPUTS - SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES Figure 1. Package SDIP30 ONE STEREO OUTPUT TREBLE, MIDDLE AND BASS CONTROL IN 2.0dB STEPS VOLUME CONTROL IN 1.0dB STEPS TWO SPEAKER ATTENUATORS: - TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY - INDEPENDENT MUTE FUNCTION Table 1. Order Codes Part Number TDA7439 Package SDIP30 audio applications in car-radio and Hi-Fi systems. Selectable input gain is provided. Control of all the functions is accomplished by serial bus. The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers. Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS 2 DESCRIPTION The TDA7439 is a volume tone (bass, middle and treble) balance (Left/Right) processor for quality Figure 2. Block Diagram MUXOUTL L-IN1 11 100K 12 100K 13 100K 14 100K 0/30dB 2dB STEP 100K 9 100K 8 G VOLUME 15 INL 16 TREBLE(L) 27 MIN(L) MOUT(L) BIN(L) 26 RM 25 23 RB BOUT(L) 24 L-IN2 L-IN3 TREBLE MIDDLE BASS SPKR ATT LEFT 6 LOUT L-IN4 30 I CBUS DECODER + LATCHES 2 R-IN1 10 1 29 SCL SDA DIG_GND R-IN2 G VOLUME TREBLE MIDDLE BASS SPKR ATT RIGHT VREF 5 ROUT R-IN3 100K 7 100K INPUT MULTIPLEXER + GAIN 17 MUXOUTR INR 18 28 TREBLE(R) RM 19 20 21 RB 22 2 D95AU342B 3 SUPPLY 4 R-IN4 VS AGND MIN(R) MOUT(R) BIN(R) BOUT(R) CREF June 2004 REV. 10 1/19 TDA7439 Figure 3. PIN CONNECTION SDA CREF VS AGND ROUT LOUT R-IN4 R-IN3 R-IN2 R-IN1 L-IN1 L-IN2 L-IN3 L-IN4 MUXOUTL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 D95AU340A 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SCL DIG_GND TREBLE(R) TREBLE(L) MIN(L) MOUT(L) BOUT(L) BIN(L) BOUT(R) BIN(R) MOUT(R) MIN(R) INR MUXOUTR INL Table 2. Absolute Maximum Ratings Symbol VS Tamb Tstg Operating Supply Voltage Operating Ambient Temperature Storage Temperature Range Parameter Value 10.5 0 to 70 -55 to 150 Unit V C C Table 3. Thermal Data Symbol Rth j-pin Parameter Thermal Resistance Junction-pins Value 85 Unit C/W Table 4. QUICK REFERENCE DATA Symbol VS VCL THD S/N SC Supply Voltage Max. input signal handling Total Harmonic Distortion V = 1Vrms f = 1KHz Signal to Noise Ratio Vout = 1Vrms (mode = OFF) Channel Separation f = 1KHz Input Gain in (2dB step) Volume Control (1dB step) Treble Control (2dB step) Middle Control (2dB step) Bass Control (2dB step) Balance Control 1dB step Mute Attenuation 0 -47 -14 -14 -14 -79 100 Parameter Min. 6 2 0.01 106 90 30 0 +14 +14 +14 0 0.1 Typ. 9 Max. 10.2 Unit V Vrms % dB dB dB dB dB dB dB dB dB 2/19 TDA7439 Table 5. Electrical Characteristcs (refer to the test circuit Tamb = 25C, VS = 9V, RL= 10K, RG = 600, all controls flat (G = 0dB), unless otherwise specified) Symbol SUPPLY VS IS SVR Supply Voltage Supply Current Ripple Rejection 6 4 60 9 7 90 10.2 10 V mA dB Parameter Test Condition Min. Typ. Max. Unit INPUT STAGE RIN VCL SIN Ginmin Ginman Gstep Input Resistance Clipping Level Input Separation Minimum Input Gain Maximum Input Gain Step Resolution THD = 0.3% The selected input is grounded through a 2.2 capacitor 70 2 80 -1 29 1.5 100 2.5 100 0 30 2 1 31 2.5 130 K Vrms dB dB dB dB VOLUME CONTROL R i Input Resistance Control Range Max. Attenuation Step Resolution Attenuation Set Error AV = 0 to -24dB AV = -24 to -47dB 20 45 45 0.5 -1.0 -1.5 33 47 47 1 0 0 0 0 0 0.5 50 49 49 1.5 1.0 1.5 1 2 3 K dB dB dB dB dB dB dB mV mV dB CRANGE AVMAX ASTEP EA E Tracking Error AV = 0 to -24dB AV = -24 to -47dB VDC Amute DC Step Mute Attenuation adjacent attenuation steps from 0dB to AV max 80 100 BASS CONTROL (1) Gb BSTEP RB Control Range Step Resolution Internal Feedback Resistance Max. Boost/cut 12.0 1 33 14.0 2 44 16.0 3 55 dB dB K TREBLE CONTROL (1) Gt TSTEP Control Range Step Resolution Max. Boost/cut 13.0 1 14.0 2 15.0 3 dB dB MIDDLE CONTROL (1) Gm MSTEP RM Control Range Step Resolution Internal Feedback Resistance Max. Boost/cut 12.0 1 18.75 14.0 2 25 16.0 3 31.25 dB dB K 3/19 TDA7439 Table 5. Electrical Characteristcs (continued) SPEAKER ATTENUATORS CRANGE SSTEP E Control Range Step Resolution Attenuation Set Error AV = 0 to -20dB AV = -20 to -56dB 70 0.5 -1.5 -2 76 1 0 0 0 82 1.5 1.5 2 3 dB dB dB dB mV dB A VDC Amute DC Step Mute Attenuation adjacent attenuation steps 80 100 AUDIO OUTPUTS VCLIP RL RO VDC GENERAL ENO Et Output Noise Total Tracking Error All gains = 0dB; BW = 20Hz to 20KHz flat AV = 0 to -24dB AV = -24 to -47dB S/N SC d Signal to Noise Ratio Channel Separation Left/Right Distortion AV = 0; VI = 1VRMS ; All gains 0dB; VO = 1VRMS ; 95 80 5 0 0 106 100 0.01 0.08 15 1 2 V dB dB dB dB % Clipping Level Output Load Resistance Output Impedance DC Voltage Level d = 0.3% 2.1 2 10 3.5 40 3.8 70 4.1 2.6 VRMS K V BUS INPUT VIL VIH IIN VO Input Low Voltage Input High Voltage Input Current Output Voltage SDA Acknowledge VIN = 0.4V IO = 1.6mA 3 -5 0 0.4 5 0.8 1 V V A V Notes: 1. The device is functionally good at Vs = 5V. a step down, on Vs, to 4V does't reset the device. 2. BASS, MIDDLE and TREBLE response: The center frequency and the response quality can be chosen by the external circuitry. 4/19 TDA7439 Figure 4. TEST CIRCUIT 5.6nF 2.2F 2.7K 18nF MIN(L) 5.6K 22nF 100nF 100nF MUXOUTL L-IN1 0.47F L-IN2 0.47F L-IN3 0.47F L-IN4 0.47F 14 100K 0/30dB 2dB STEP 100K 9 100K 8 100K 7 100K INPUT MULTIPLEXER + GAIN 13 100K 12 100K G 11 100K INL 15 TREBLE(L) 16 27 MOUT(L) 26 RM 25 BIN(L) 23 RB BOUT(L) 24 VOLUME TREBLE MIDDLE BASS SPKR ATT LEFT 6 LOUT 30 I CBUS DECODER + LATCHES 2 R-IN1 0.47F R-IN2 0.47F R-IN3 0.47F R-IN4 0.47F 10 1 29 SCL SDA DIGGND G VOLUME TREBLE MIDDLE BASS SPKR ATT RIGHT VREF 5 ROUT 3 RM 17 MUXOUTR INR 18 TREBLE(R) 28 MIN(R) 19 20 21 BIN(R) RB 22 BOUT(R) SUPPLY 4 VS AGND 2 CREF MOUT(R) 2.2F 5.6nF 18nF 2.7K 22nF 100nF 5.6K 100nF 10F D95AU339B 3 APPLICATION SUGGESTIONS The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one. Both of them have 1dB step resolution. The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7439 audioprocessor provides 3 bands tones control. 3.1 Bass, Middle Stages The Bass and the middle cells have the same structure. The Bass cell has an internal resistor Ri = 44K typical. The Middle cell has an internal resistor Ri = 25K typical. Several filter types can be implemented, connecting external components to the Bass/Middle IN and OUT pins. Figure 5. Ri internal IN C1 R2 D95AU313 OUT C2 5/19 TDA7439 The fig.5 refers to basic T Type Bandpass Filter starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows: 1 FC = ----------------------------------------------------------------2 R1 R2 C 1 C2 R2C 2 + R2C1 + RiC1 AV = -----------------------------------------------------------R2 C1 + R2C2 R 1 R2 C1 C2 Q = ------------------------------------------------R 2C1 + R2C2 Viceversa, once Fc, Av, and Ri internal value are fixed, the external components values will be: AV - 1 C1 = ----------------------------------------2 Fc Ri Q Q C1 C2 = ----------------------------2 AV - 1 - Q 2 AV - 1 - Q R2 = --------------------------------------------------------------------2 C1 Fc ( AV - 1 ) Q 2 3.2 Treble Stage The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25K typical) and an external capacitor connected between treble pins and ground Typical responses are reported in Figg. 10 to 13. 3.3 CREF The suggested 10F reference capacitor (CREF) value can be reduced to 4.7F if the application requires faster power ON. Figure 6. THD vs. frequency Figure 7. THD vs. RLOAD 6/19 TDA7439 Figure 8. Channel separation vs. frequency Figure 11. Middle response Figure 9. Bass response Figure 12. Typical tone response Figure 10. Treble response 7/19 TDA7439 4 I2C BUS INTERFACE Data transmission from microprocessor to the TDA7439 and vice versa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 4.1 Data Validity As shown in fig. 13, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 4.2 Start and Stop Conditions As shown in fig.14 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 4.3 Byte Format Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 4.4 Acknowledge The master (P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 15). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse. The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer. 4.5 Transmission without Acknowledge Avoiding to detect the acknowledge of the audio processor, the mP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking. Figure 13. Data Validity on the I2CBUS SDA SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED D99AU1031 Figure 14. SCL I2CBUS SDA D99AU1032 START STOP 8/19 TDA7439 Figure 15. SCL 1 2 3 7 8 9 SDA MSB START D99AU1033 ACKNOWLEDGMENT FROM RECEIVER 5 SOFTWARE SPECIFICATION 5.1 Interface Protocol The interface protocol comprises: A start condition (S) A chip address byte, containing the TDA7439 address A subaddress bytes A sequence of data (N byte + acknowledge) A stop condition (P) Figure 16. CHIP ADDRESS MSB S 1 0 0 0 1 0 0 LSB 0 ACK MSB X X X B DATA SUBADDRESS LSB ACK MSB DATA DATA 1 to DATA n LSB ACK P D96AU420 ACK = Acknowledge S = Start P = Stop A = Address B = Auto Increment 6 EXAMPLES 6.1 No Incremental Bus The TDA7439 receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition. Figure 17. CHIP ADDRESS MSB S 1 0 0 0 1 0 0 LSB 0 ACK MSB X X X SUBADDRESS LSB 0 D3 D2 D1 D0 ACK MSB DATA DATA LSB ACK P D96AU421 9/19 TDA7439 6.2 Incremental Bus The TDA7439 receive a start conditions, the correct chip address, a subaddress with the B = 1 incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored. The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition. Figure 18. CHIP ADDRESS MSB S 1 0 0 0 1 0 0 LSB 0 ACK MSB X X X SUBADDRESS LSB 1 D3 D2 D1 D0 ACK MSB DATA DATA 1 to DATA n LSB ACK P D96AU422 Table 6. POWER ON RESET CONDITION INPUT SELECTION INPUT GAIN VOLUME BASS MIDDLE TREBLE SPEAKER IN2 28dB MUTE 0dB 2dB 2dB MUTE 7 DATA BYTES Address = 88 HEX (ADDR:OPEN). Figure 19. FUNCTION SELECTION: First byte (subaddress) MSB D7 X X X X X X X X D6 X X X X X X X X D5 X X X X X X X X D4 B B B B B B B B D3 0 0 0 0 0 0 0 0 D2 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 LSB SUBADDRESS D0 0 1 0 1 0 1 0 1 INPUT SELECT INPUT GAIN VOLUME BASS MIDDLE TREBLE SPEAKER ATTENUATE "R" SPEAKER ATTENUATE "L" B = 1: INCREMENTAL BUS ACTIVE B = 0: NO INCREMENTAL BUS X = DON'T CARE 10/19 TDA7439 Table 7. INPUT SELECTION MSB D7 X X X X D6 X X X X D5 X X X X D4 X X X X D3 X X X X D2 X X X X D1 0 0 1 1 LSB INPUT MULTIPLEXER D0 0 1 0 1 IN4 IN3 IN2 IN1 Table 8. INPUT GAIN SELECTION MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 LSB D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 INPUT GAIN 2dB STEPS 0dB 2dB 4dB 6dB 8dB 10dB 12dB 14dB 16dB 18dB 20dB 22dB 24dB 26dB 28dB 30dB GAIN = 0 to 30dB 11/19 TDA7439 Table 9. VOLUME SELECTION MSB D7 D6 D5 D4 D3 D2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 X 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 X X X D1 0 0 1 1 0 0 1 1 LSB D0 0 1 0 1 0 1 0 1 VOLUME 1dB STEPS 0dB -1dB -2dB -3dB -4dB -5dB -6dB -7dB 0dB -8dB -16dB -24dB -32dB -40dB MUTE VOLUME = 0 to 47dB/MUTE Table 10. BASS SELECTION MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 D1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 LSB D0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 BASS 2dB STEPS -14dB -12dB -10dB -8dB -6dB -4dB -2dB 0dB 0dB 2dB 4dB 6dB 8dB 10dB 12dB 14dB 12/19 TDA7439 Table 11. MIDDLE SELECTION MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 D1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 LSB D0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 MIDDLE 2dB STEPS -14dB -12dB -10dB -8dB -6dB -4dB -2dB 0dB 0dB 2dB 4dB 6dB 8dB 10dB 12dB 14dB Table 12. TREBLE SELECTION MSB D7 D6 D5 D4 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 D1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 LSB D0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 TREBLE 2dB STEPS -14dB -12dB -10dB -8dB -6dB -4dB -2dB 0dB 0dB 2dB 4dB 6dB 8dB 10dB 12dB 14dB 13/19 TDA7439 Table 13. SPEAKER ATTENUATE SELECTION MSB D7 D6 D5 D4 D3 D2 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 LSB D0 0 1 0 1 0 1 0 1 SPEAKER ATTENUATION 1dB 0dB -1dB -2dB -3dB -4dB -5dB -6dB -7dB 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 X X X 0dB -8dB -16dB -24dB -32dB -40dB -48dB -56dB -64dB -72dB MUTE SPEAKER ATTENUATION = 0 to -79dB/MUTE 14/19 TDA7439 Figure 20. PINS: 2 Figure 23. PINS 15, 17 VS VS 20K VS VS 20A CREF 20K MIXOUT GND D96AU430 D96AU426 Figure 21. PINS: 5, 6 VS Figure 24. PINS 16, 18 VS 20A ROUT LOUT 24 INL INR 20A 33K D96AU427 VREF D96AU434 Figure 22. PINS 7, 8, 9, 10, 11, 12, 13, 14 Figure 25. PINS 20, 25 VS VS 20A 20A IN 100K VREF D96AU425 25K MOUT(L) MOUT(R) D96AU431 15/19 TDA7439 Figure 26. PINS 19,26 Figure 29. PINS 27, 28 VS 20A VS 20A TREBLE(L) TREBLE(R) 25K 50K MOUT(L) D96AU433 MOUT(R) D96AU431 Figure 27. PINS 21, 23 Figure 30. PIN 30 VS 20A 20A SCL 44K BIN(L) BIN(R) D96AU428 D96AU424 Figure 28. PINS 22, 24 Figure 31. PIN 1 VS 20A 20A SDA 44K BOUT(L) BOUT(R) D96AU429 D96AU423 16/19 TDA7439 Figure 32. SDIP30 Mechanical Data & Package Dimensions mm MIN. A A1 A2 B B1 C D E E1 e e1 L M S 0.31 2.54 0.51 3.05 0.36 0.76 0.20 27.43 10.16 8.38 3.81 0.46 0.99 0.25 27.94 10.41 8.64 1.778 10.16 3.30 3.81 0.10 4.57 0.56 1.40 0.36 28.45 11.05 9.40 TYP. MAX. 5.08 0.020 0.12 0.014 0.030 0.008 1.08 0.400 0.330 0.15 0.018 0.039 0.01 1.10 0.410 0.340 0.070 0.400 0.13 0.15 0.18 0.022 0.055 0.014 1.12 0.435 0.370 MIN. inch TYP. MAX. 0.20 DIM. OUTLINE AND MECHANICAL DATA 0(min.), 15(max.) 0.012 SDIP30 (0.400") 17/19 TDA7439 Table 14. Revision History Date January 2004 June 2004 Revision 9 10 Description of Changes First Issue in EDOCS DMS Changed the Style-sheet in compliance to the new "Corporate Technical Pubblications Design Guide" 18/19 TDA7439 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 19/19 |
Price & Availability of TDA7439D
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |