![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
(R) M VNQ810M QUAD CHANNEL HIGH SIDE DRIVER TYPE VNQ810M (*) Per each channel RDS(on) 150 m (*) IOUT 0.6 A (*) VCC 36 V CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS s ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s PROTECTION AGAINST LOSS OF GROUND s VERY LOW STAND-BY CURRENT s s s SO-28 (DOUBLE ISLAND) ORDER CODES PACKAGE REVERSE BATTERY PROTECTION (**) SO-28 TUBE VNQ810M T&R VNQ810M13TR DESCRIPTION The VNQ810M is a quad HSD formed by assembling two VND810M chips in the same SO28 package. The VND810M is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - Ignd IOUT - IOUT IIN ISTAT against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The current limitation threshold is aimed at detecting the 21W/12V standard bulb as an overload fault. The device detects open load condition both in on and off state . Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. Value 41 -0.3 -200 Internally Limited -6 +/- 10 +/- 10 4000 4000 5000 5000 174 6.25 Internally Limited -55 to 150 Rev. 1 1/21 Unit V V mA A A mA mA V V V V mJ W C C Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT - STATUS - OUTPUT - VCC Maximum Switching Energy (L=310mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=0.9A) Power dissipation (per island) at Tlead=25C Junction Operating Temperature Storage Temperature VESD EMAX Ptot Tj Tstg (**) See application schematic at page 9 July 2004 VNQ810M BLOCK DIAGRAM VCC1,2 Vcc CLAMP OVERVOLTAGE UNDERVOLTAGE GND1,2 CLAMP 1 OUTPUT1 DRIVER 1 CLAMP 2 INPUT1 STATUS1 CURRENT LIMITER 1 LOGIC OVERTEMP. 1 OPENLOAD ON 1 CURRENT LIMITER 2 INPUT2 OPENLOAD OFF 1 STATUS2 OPENLOAD ON 2 DRIVER 2 OUTPUT2 OPENLOAD OFF 2 OVERTEMP. 2 VCC3,4 Vcc CLAMP OVERVOLTAGE UNDERVOLTAGE GND3,4 INPUT3 CLAMP 3 OUTPUT3 DRIVER 3 CLAMP 4 STATUS3 CURRENT LIMITER 3 LOGIC OVERTEMP. 3 OPENLOAD ON 3 CURRENT LIMITER 4 INPUT4 OPENLOAD OFF 3 STATUS4 OPENLOAD OFF 4 OVERTEMP. 4 OPENLOAD ON 4 DRIVER 4 OUTPUT4 2/21 VNQ810M CURRENT AND VOLTAGE CONVENTIONS IS3,4 VCC3,4 IIN1 VIN1 VSTAT1 VIN2 VSTAT2 VIN3 VSTAT3 ISTAT1 IIN2 ISTAT2 IIN3 ISTAT3 IIN4 INPUT1 STATUS1 INPUT2 STATUS2 INPUT3 STATUS3 INPUT4 STATUS4 GND3,4 IGND3,4 OUTPUT3 IOUT4 OUTPUT4 GND1,2 IGND1,2 VOUT4 VOUT3 OUTPUT2 IOUT3 VOUT2 OUTPUT1 IOUT2 IOUT1 VOUT1 VCC3,4 VCC1,2 IS1,2 VF1 (*) VCC1,2 VIN4 ISTAT4 VSTAT4 (*) VFn = VCCn - VOUTn during reverse battery condition CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS VCC1,2 GND 1,2 INPUT1 STATUS1 STATUS2 INPUT2 VCC1,2 VCC3,4 GND 3,4 INPUT3 STATUS3 STATUS4 INPUT4 VCC3,4 1 28 VCC1,2 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT2 OUTPUT2 OUTPUT2 OUTPUT3 OUTPUT3 OUTPUT3 OUTPUT4 OUTPUT4 OUTPUT4 14 15 VCC3,4 Connection / Pin Floating To Ground Status X N.C. X X Output X Input X Through 10K resistor 3/21 VNQ810M THERMAL DATA (Per island) Symbol Rthj-lead Rthj-amb Rthj-amb (1) Parameter Thermal Resistance Junction-lead per chip Thermal Resistance Junction-ambient (one chip ON) Thermal Resistance Junction-ambient (two chips ON) 60 (1) 46 (1) Value 20 44 (2) 31 (2) Unit C/W C/W C/W When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35m thick) connected to all V CC pins. Horizontal mounting and no artificial air flow. (2) When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35m thick) connected to all V CC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V IOUT=0.5A; Tj=25C IOUT=0.5A; VCC> 8V Off State; VCC=13V; VIN=VOUT=0V IS (**) Supply Current Off State; VCC=13V; VIN=VOUT=0V; Tj =25C On State; VCC=13V; VIN=5V; IOUT=0A IL(off1) IL(off2) IL(off3) IL(off4) Off Off Off Off State State State State Output Current Output Current Output Current Output Current VIN=VOUT=0V VIN=0V; VOUT =3.5V VIN=VOUT=0V; VCC=13V; Tj =125C VIN=VOUT=0V; VCC=13V; Tj =25C SWITCHING (Per each Channel) (VCC=13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=26 from VIN rising edge to VOUT =1.3V RL=26 from VIN falling edge to VOUT =11.7V RL=26 from VOUT =1.3V to VOUT=10.4V Min Typ 30 30 See relative diagram See relative diagram Max Unit s s V/s dVOUT/dt(on) Turn-on Voltage Slope dVOUT/dt(off) Turn-off Voltage Slope RL=26 from VOUT =11.7V to VOUT=1.3V V/s LOGIC INPUT (Per each channel) Symbol VIL IIL VIH IIH VI(hyst) VICL (**) Per island Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN = 1.25V VIN = 3.25V IIN = 1mA IIN = -1mA Min 1 3.25 Typ Max 1.25 10 0.5 6 6.8 -0.7 8 Unit V A V A V V V 4/21 1 VNQ810M ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=0.53A; Tj=150C Min Typ Max 0.6 Unit V STATUS PIN (Per each channel) Symbol VSTAT ILSTAT CSTAT VSCL Parameter Status Low Output Voltage Status Leakage Current Status Pin Input Capacitance Status Clamp Voltage Test Conditions ISTAT = 1.6 mA Normal Operation; VSTAT= 5V Normal Operation; VSTAT= 5V ISTAT =1mA ISTAT =-1mA 6 6.8 -0.7 Min Typ Max 0.5 10 100 8 Unit V A pF V V PROTECTIONS (Per each channel) (see note 1) Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status Delay in Overload Conditions Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 0.7 5.5V < VCC < 36V IOUT =0.5A 0.9 1.4 1.4 VCC-41 VCC-48 VCC-55 Max 200 Unit C C C s A A V Tj>TTSD Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. OPENLOAD DETECTION (per each channel) Symbol IOL tDOL(on) VOL tDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V IOUT=0A VIN=0V 1.5 2.5 Min 20 Typ 40 Max 80 200 3.5 1000 OVERTEMP STATUS TIMING Tj > TTSD VINn Unit mA s V s OPENLOAD STATUS TIMING (with external pull-up) VOUT > VOL VINn IOUT < IOL VSTATn VSTATn tSDL tDOL(off) tDOL(on) tSDL 5/21 2 VNQ810M Switching time Waveforms vOUTn 90% 80% dVOUT/dt(on) dVOUT/dt(off) 10% t VINn td(on) td(off) t TRUTH TABLE CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L 6/21 VNQ810M ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2 I C C C C C C IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. 7/21 VNQ810M Figure 1: Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VCC INPUTn OUTPUT VOLTAGEn STATUSn undefined VUSD VUSDhyst OVERVOLTAGE VCC INPUTn OUTPUT VOLTAGEn STATUSn OPEN LOAD with external pull-up INPUTn OUTPUT VOLTAGEn STATUSn VOUT>VOL VOL VCC OPEN LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn OVERTEMPERATURE Tj INPUTn OUTPUT CURRENTn STATUSn TTSD TR 8/21 1 VNQ810M APPLICATION SCHEMATIC +5V +5V +5V VCC1,2 Rprot STATUS1 VCC3,4 Rprot INPUT1 Dld Rprot STATUS2 OUTPUT1 Rprot C INPUT2 Rprot STATUS3 OUTPUT2 Rprot OUTPUT3 INPUT3 Rprot STATUS4 OUTPUT4 INPUT4 GND1,2 GND3,4 Rprot RGND +5V +5V VGND DGND Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2. GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / 2(IS(on)max ). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2. 9/21 VNQ810M Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The 10/21 VNQ810M OPEN LOAD DETECTION IN OFF STATE Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL V batt. VPU VCC RPU INPUT DRIVER + LOGIC OUT + R STATUS VOL RL IL(off2) GROUND 11/21 VNQ810M Off State Output Current IL(off1) (uA) 1.6 1.44 1.28 1.12 0.96 0.8 0.64 0.48 0.32 0.16 0 -50 -25 0 25 50 75 100 125 150 175 High Level Input Current Iih (uA) 5 Off state Vcc=36V Vin=Vout=0V 4.5 Vin=3.25V 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Input Clamp Voltage Vicl (V) 8 7.8 Status Leakage Current Ilstat (uA) 0.05 Iin=1mA 7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175 0 -50 -25 0 25 50 75 100 125 150 175 0.01 0.02 0.03 0.04 Vstat=5V Tc (C) Tc (C) Status Low Output Voltage Vstat (V) 0.8 0.7 Status Clamp Voltage Vscl (V) 8 7.8 Istat=1.6mA 0.6 Istat=1mA 7.6 7.4 0.5 0.4 0.3 0.2 7.2 7 6.8 6.6 6.4 0.1 0 -50 -25 0 25 50 75 100 125 150 175 6.2 6 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) 12/21 VNQ810M On State Resistance Vs Tcase Ron (mOhm) 400 350 300 250 200 150 100 100 50 0 -50 -25 0 25 50 75 100 125 150 175 On State Resistance Vs VCC Ron (mOhm) 300 275 Iout=1A Vcc=8V; 13V & 36V 250 Tc= 150C 225 200 Iout=1A 175 150 Tc= 25C 125 Tc= - 40C 75 50 5 10 15 20 25 30 35 40 Tc (C) Vcc (V) Openload On State Detection Threshold Iol (mA) 60 55 50 45 40 35 30 25 Input High Level Vih (V) 3.6 3.4 Vcc=13V Vin=5V 3.2 3 2.8 2.6 2.4 20 15 10 -50 -25 0 25 50 75 100 125 150 175 2.2 2 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Input Low Level Vil (V) 2.6 2.4 2.2 Input Hysteresis Voltage Vhyst (V) 1.5 1.4 1.3 1.2 2 1.8 1.6 1.4 1.1 1 0.9 0.8 0.7 1.2 1 -50 -25 0 25 50 75 100 125 150 175 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) 13/21 VNQ810M Overvoltage Shutdown Vov (V) 50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175 Openload Off State Voltage Detection Threshold Vol (V) 5 4.5 Vin=0V 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Turn-on Voltage Slope dVout/dt(on) (V/ms) 1000 900 800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175 Turn-off Voltage Slope dVout/dt(off) (V/ms) 500 450 Vcc=13V Rl=13Ohm Rl=26Ohm 400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) ILIM Vs Tcase Ilim (A) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 75 100 125 150 175 Vcc=13V Tc (C) 14/21 VNQ810M Maximum turn off current versus load inductance ILMAX (A) 10 A 1 B C 0.1 1 10 L(mH) 100 1000 A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 15/21 VNQ810M SO-28 DOUBLE ISLAND THERMAL DATA SO-28 Double island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.5cm2, 3cm2, 6cm2). Thermal calculation according to the PCB heatsink area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + T amb Pdchip1Pdchip2 RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance Rthj-amb Vs. PCB copper area in open box free air condition RTHj_am b (C/W) 70 60 50 RthA 40 30 20 10 0 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 RthB RthC 16/21 VNQ810M SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(C/W) 100 0,5 cm ^2/is land 3 cm ^2/is land 6 cm ^2/is land 10 One channel ON 1 Two channels ON on same chip 0.1 0.01 0.0001 0.001 0.01 0.1 time(s) 1 10 100 1000 Thermal fitting model of a four channels HSD in SO-28 Tj_1 C1 C2 C3 C4 C5 C6 Pulse calculation formula Z TH = R TH + Z THtp ( 1 - ) where = tp T 0.5 0.35 1.8 4.5 11 15 30 0.0001 7.00E-04 6.00E-03 0.2 1.5 5 150 6 R1 Pd1 C13 R2 R3 R4 R5 R6 Thermal Parameter Area/island (cm2) R1=R7=R13=R15 (C/W) R2=R8=R14=R16 (C/W) R3=R9 (C/W) R4=R10 (C/W) R5=R11 (C/W) R6=R12 (C/W) C1=C7=C13=C15 (W.s/C) C2=C8=C14=C16 (W.s/C) C3=C9 (W.s/C) C4=C10 (W.s/C) C5=C11 (W.s/C) C6=C12 (W.s/C) R17=R18 (C/W) Tj_2 C14 R13 Pd2 R14 R17 R18 Tj_3 Pd3 C7 C8 C9 C10 C11 C12 R7 R8 R9 R10 R11 R12 13 Tj_4 C15 C16 R15 Pd4 R16 T_amb 8 17/21 VNQ810M SO-28 MECHANICAL DATA DIM. A a1 b b1 C c1 D E e e3 F L S 7.40 0.40 17.7 10.00 1.27 16.51 7.60 1.27 8 (max.) 0.291 0.016 18.1 10.65 0.10 0.35 0.23 0.50 45 (typ.) 0.697 0.393 0.050 0.650 0.299 0.050 0.713 0.419 mm. MIN. TYP MAX. 2.65 0.30 0.49 0.32 0.004 0.013 0.009 0.020 MIN. inch TYP. MAX. 0.104 0.012 0.019 0.012 18/21 VNQ810M SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1) All dimensions are in mm. A C B 28 700 532 3.5 13.8 0.6 TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 16 4 12 1.5 1.5 7.5 6.5 2 End All dimensions are in mm. Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components 19/21 VNQ810M REVISION HISTORY Date Revision - Minor changes - Current and voltage convention update (page 3). - "Configuration diagram (top view) & suggested connections for unused and n.c. pins" insertion (page 3). Jul 2004 1 - 6 cm2 Cu condition insertion in Thermal Data table (page 4). - VCC - OUTPUT DIODE section update (page 5). - PROTECTIONS note insertion (page 5) - Revision History table insertion (page 20). - Disclaimers update (page 21). Description of Changes 20/21 1 VNQ810M Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 21/21 |
Price & Availability of VNQ810M13TR
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |