![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No.PD60266 IRS2308(S)PbF HALF-BRIDGE DRIVER Features * Floating channel designed for bootstrap operation * Fully operational to +600 V * Tolerant to negative transient voltage, dV/dt immune Packages * Gate drive supply range from 10 V to 20 V * Undervoltage lockout for both channels * 3.3 V, 5 V, and 15 V input logic compatible * Cross-conduction prevention logic 8-Lead SOIC IRS2308S * Matched propagation delay for both channels * Outputs in phase with inputs * Logic and power ground +/- 5 V offset. * Internal 540 ns deadtime * Lower di/dt gate driver for better Feature Comparison noise immunity Cross* RoHS compliant Deadtime Input conduction Part 8-Lead PDIP IRS2308 Description logic prevention logic (ns) Ground Pins ton/toff (ns) COM 220/200 HIN/LIN no none The IRS2308/IRS23084 are high volt21064 VSS/COM age, high speed power MOSFET and 2108 Internal 540 COM 220/200 HIN/LIN yes Programmable 540 - 5000 VSS/COM 21084 IGBT drivers with dependent high-side 2109 Internal 540 COM 750/200 IN/SD yes and low-side referenced output channels. Programmable 540 - 5000 VSS/COM 21094 Proprietary HVIC and latch immune yes 160/140 HIN/LIN Internal 100 COM 2304 CMOS technologies enable ruggedized 2308 HIN/LIN yes Internal 540 COM 220/200 monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V. 2106 Typical Connection up to 600 V VCC VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2308(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL Definition High-side floating absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Logic input voltage (HIN & LIN ) Allowable offset supply voltage transient Package power dissipation @ TA +25 C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 -- -- -- -- -- -- -50 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Logic input voltage Ambient temperature Min. V S + 10 Note 1 VS 10 0 COM -40 Max. VS + 20 600 VB 20 VCC VCC 125 Units V C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2308(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 C, DT = VSS unless otherwise specified. Symbol ton toff MT tr tf DT MDT Definition Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff | Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO | Min. -- -- -- -- -- 400 -- Typ. 220 200 0 100 35 540 0 Max. Units Test Conditions 300 280 46 220 80 680 60 ns VS = 0 V VS = 0 V VS = 0 V or 600 V Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= VSS and TA = 25 C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic "1" input voltage for HIN & LIN Logic "0" input voltage for HIN & LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.5 -- -- -- -- 20 0.4 -- -- 8.0 7.4 0.3 97 250 -- -- 0.05 0.02 -- 60 1.0 5 1 8.9 8.2 0.7 290 600 -- 0.8 0.2 0.1 50 150 1.6 20 5 9.8 9.0 -- -- mA -- VO = 0 V, PW 10 s VO = 15 V, PW 10 s V A mA A VIN = 0 V or 5 V HIN = 5 V, LIN = 5 V HIN = 0 V, LIN = 0 V VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V www.irf.com 3 IRS2308(S)PbF Functional Block Diagram VB IR2308 HV LEVEL SHIFTER UV DETECT R PULSE FILTER R S Q HO HIN VSS/COM LEVEL SHIFT VS PULSE GENERATOR DT DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS www.irf.com 4 IRS2308(S)PbF Lead Definitions Symbol Description HIN LIN VB HO VS VCC LO COM Logic input for high-side gate driver output (HO), in phase Logic input for low-side gate driver output (LO), in phase High-side floating supply High-side gate driver output High-side floating supply return Low-side and logic fixed supply Low-side gate driver output Low-side return Lead Assignments 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IRS2308PbF IRS2308SPbF www.irf.com 5 IRS2308(S)PbF LIN HIN 50% 50% LIN HIN ton tr 90% toff 90% tf HO LO HO LO 10% 10% Figure 1. Input/Output Timing Diagram Figure 2. Switching Time Waveform Definitions LIN 50 % 50 % HIN 90% HO LO DTLO-HO 10% DTHO-LO 90% 10% MDT= DT LO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions www.irf.com 6 IRS2308(S)PbF 500 Turn-On Delay Time (ns) (ns Turn-on Delay Time Turn-On Delay Time (ns) Turn-on Delay Time (ns 500 400 300 200 100 0 -25 0 25 50 75 100 125 Typ. 400 300 Max. Max. 200 Typ. 100 0 -50 10 12 14 16 18 20 Temperature(oC) Temperature (oC) Figure 4A. Turn-On Time Figure 4A. Turn-On Time vs. Temperature vs. Temperature VBIAS Supply Voltage (V) V BIAS Figure 4B. Turn-On Time Figure 4B. Turn-On Time vs. Supply Voltage vs. Supply Voltage 500 Turn-Off Time (ns) Turn-O ffTime (ns) Turn-Off ff Time (ns ) Turn-O Time (ns) 500 400 Max. 400 300 Max. 300 Typ. 200 100 0 -50 Typ. 200 100 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC)oC) Temperature( VV BIASSupply Voltage (V) BIAS Supply Voltage (V) Figure 5A. Turn-Off Propagation Delay Figure 5A. Turn-Off Propagation Delay vs. Temperature vs. Temperature Figure 5B. Turn-Off Propagation Delay vs. Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage Supply Voltage www.irf.com 7 IRS2308(S)PbF 500 400 300 200 100 Typ. 50 0 Turn-Onse T m e (ns) T urn-O n R iRisei Time (ns) Turn-On Rise Time (ns) 40 0 30 0 Max. Max. 20 0 Typ. 10 0 0 0 -50 -25 0 25 50 75 100 125 Temperature(oC) 10 12 14 16 18 20 VBIAS Supply Voltage (V) Fig u re 6A . T Turn-On Rise im e Figure 6A. u rn -O n R is e T Time vs .T e m p e ratu re vs. Temperature Fig u re 6B . Turn-On Rise im e Figure 6B. T u rn -O n R is e TTime vs S u p p ly Voltage vs..Supply V o ltag e 150 100 Max. Turn-Off Fall m e T urn-O ff F a l T iTime (ns) l Turn-Off Fall Time (ns) 200 20 0 15 0 10 0 Max. 50 Typ. 50 Typ. 0 -50 -25 0Temperature50oC) 75 25 ( Temperature(oC) 0 100 125 10 12 VBIAS Supply Voltage (V) 14 16 18 20 Input Voltage (V) Fig u re 7A T u rn -O ff Fall T im e Figure 7A..Turn-Off Fall Time vs. . T e m p e ratu re vs Temperature Fig u re 7B . T u rn -O ff Fall Time Figure 7B. Turn-Off Fall T im e vs . In p u t Voltage vs. Supply vo ltag e www.irf.com 8 IRS2308(S)PbF 1000 Deadtime (ns) (ns) Deadtime 1000 800 600 400 200 -25 0 25 50 75 100 125 Deadtime (ns) Deaduime ( ns) 800 Max. Max. 600 Typ. Typ. Min. 400 Min. 200 -50 10 12 14 16 18 20 Temperature (oC) Temperature (oC) V BIAS Supply Voltage (V) BIAS Supply Voltage (V) Figure 8A. Deadtime vs. Supply Voltage Figure 8B. Deadtime vs Supply Voltage Figure 8A. Deadtime vs. Temperature Figure 8A. Deadtime vs. Temperature 5 Input Voltage (V) Input Voltage (V) 5 4 3 Min. 3 Min. Input Voltage (V) Input Voltage (V) 4 2 1 -50 2 1 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Temperature (oC) V BIAS Supply Voltage (V) VBIAS Supply Voltage (V) Figure 9B. Logic "1" Input Voltage "1" Input Voltage Figure 9B. vs. Supply Voltage vs. Supply Voltage Figure 9A. Logic "1" Input Voltage Figure 9A. Logic "1" Input Voltage vs. Temperature vs. Temperature www.irf.com 9 IRS2308(S)PbF 4 3 4 3 2 1 Max. Input Voltage (V) (V) Input Voltage 2 1 Max. Input Voltage (V) Input Voltage (V) 0 -50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Temperatre (o VBIAS Supply Voltage (V) Supply Voltage (V) Figure 10B. Logic "0" Input Voltage Figure 10A. Logic "0" Input Voltage vs. Supply Voltage vs. Supply Voltage Figure 10A. Logic "0" Input Voltage Figure 10A. Logic "0" Input Voltage vs. Temperature vs. Temperature High Level utput Voltage (V) High Level OOutputVoltage (V) High Level utput Voltage (V) High Level OOutput Voltage (V) 0.5 0.4 0.3 0.2 0.1 0.0 -50 0.5 0.4 0.3 Max. Max. 0.2 0.1 Typ. Typ. 0.0 10 12 14 16 18 20 -25 0 25 50 75 100 125 Temperature (oC) Temperature oC) Figure 11A. High Level Output Voltage Figure 11A. High Level Output Voltage vs. Temperature vs. Temperature Voltage (V) VBIAS Supply Voltage (V) BAIS Figure 11A. High Level Output Voltage Figure 11B. High Lovel Output Voltage vs. Supply Voltage vs. Supply Voltage www.irf.com 10 IRS2308(S)PbF Low Level Output Voltage (V) Low Level O utput Voltage (V) Low Level Output Voltage (V) Low Level O utput Voltage (V) 0.5 0.4 0.3 0.2 0.1 Max. Typ. 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 -50 0 10 12 14 16 18 20 -25 0 25 50 75 100 125 o Temperature (oC) Temperature ( C) VBIAS Supply Voltage (V) Voltage (V) V BIAS Figure 12A. Low Level Output Voltage Figure 12A. Low Level Output Voltage vs. Temperature vs.Temperature Figure 12B. Low Level Output Figure 12B. Low Level Output Voltage vs. Supply Voltage vs. Supply Voltage 300 240 180 120 60 Max. Offset Supply Leakage urrentt((A) O ffset Supply Leak age cCurrent(A) Offset Supply Leakage Current ( Offset Supply Leakage Current A) O ffset Supply Leak age Current (A) ( 300 240 180 120 60 Max. 0 -50 0 0 100 200 300 400 500 600 -25 0 25 50 75 100 125 Temperature oC) Temperature ((oC) V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Figure 13A. Offset Supply Leakage Current Current vs. Supply Voltage vs. Supply Voltage Figure 13A. Offset Supply Leakage Figure 13A. Offset Supply Leakage Current Current vs. Temperature vs. Temperature www.irf.com 11 IRS2308(S)PbF 300 VBS BS Supply Current ( ) V Supply Current (A) VBS Supply Current ( V BS Supply Current (A) ) 300 240 180 120 60 0 -25 0 25 50 75 100 125 240 180 120 60 0 -50 Max. Max. Typ. Min. Typ. Min. 10 12 14 16 18 20 Temperature Temperature oC) (oC) V Supply Voltage (V) VBS Supply Voltage (V) BS Figure 14A. V BS Supply Current Supply Current Figure 14A. vs. Temperature Figure 14B. VBS Supply Current Figure vs. Supply Voltage 14B. V BS Supply Current vs. Supply Voltage 3.0 VVCC Supply Current (mA) ) C C Supply Current (m VVCCSupply Current(mA)) CC Supply Current (m 3 2.4 1.8 1.2 Max. 2.4 1.8 1.2 Typ. Max. 0.6 Min. 0.6 0 Typ. Min. 0.0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature oC) Temperature (oC) Supply Voltage (V) VCC Supply Voltage (V) Figure 15A. V CC Supply Current Figure 15A. VCC Supply Current vs. Temperature vs. Temperature Figure 15B. V CC Supply Current Figure 14B. VCC Supply Current vs. Supply Voltage vs. Supply Voltage www.irf.com 12 IRS2308(S)PbF 50 Logic "1" Input Current A) ( 40 30 20 Max. 50 Logic "1" Input Current ( Logic "1" Input Current (A) ) Logic "1" Input Current (A) 40 30 Max. 20 10 0 10 Typ. Typ. 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature C) Temperature ((ooC) VCC Supply Voltage (V) VCC Supply Voltage (V) Figure 16A. Logic "1" Input Current Figure 16A. Logic "1" Input Current vs. Temperature vs. Temperature Figure 16B. Logic "1" Input Current Figure 16B. Logic "1" Input Current vs. Supply Voltage vs. Supply Voltage Logic "0" Input Current (A) Logic "0" Input Bias Current (A) Logic "0" Input Bias Current (A) 6 5 4 3 2 Typ. Max. 6 5 4 3 2 Typ. Max. Logic "0" Input Current (A) Max Max 1 0 -50 1 0 10 12 14 16 18 20 -25 0 25 50 75 100 125 Temperature (oC) Supply Voltage (V) Figure 17A. Logic "0" Input Bias Current vs. Temperature Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage www.irf.com 13 IRS2308(S)PbF UVLO Thres hold (+) (V) VVcc UVLO Threshold (+) (V) CC 11 10 Max. Vcc UVLO Threshold (V) V C C UVLO Threshold (-) (-) (v ) 12 11 10 9 8 7 6 -50 Max. 9 Typ. Typ. 8 Min. Min. 7 -50 -25 0 25 50 75 100 125 -25 0 25 50 75 100 125 Temperature (oC) Temperature ( C) Figure 18. Vcc Undervoltage Threshold (+) Figure 18. V CC Undervoltage Threshold (+) vs. Temperature vs. Temperature oC) Temperature (oC) Figure 19. Vcc Undervoltage Threshold (-) Figure 19. V CC Undervoltage Threshold (-) vs. Temperature vs. Temperature VVBSUVLO Thres hold(+) (V) BS UVLO Threshold (+) (v) 11 10 Max. VBS UVLO Threshold (-) (-) (V) V BS UVLO Thres hold (V) 12 11 10 9 8 7 6 -50 Max. 9 Typ. Typ. 8 Min. Min. 7 -50 -25 0 25 50 75 100 125 -25 0 25 50 75 100 125 Temperature (oC) Temperature (o o C) Temperature (oC) Figure 20. BS Undervoltage Figure 20. VV BSUndervoltage Threshold (+) (+) vs. Temperature vs. Temperature Figure 21. VBS Undervoltage Threshold Figure 21. V BS Undervoltage Threshold (-)(-) vs. Temperature vs. Temperature www.irf.com 14 IRS2308(S)PbF 500 500 OOutput SourceCurrent (mA) ) utput Source Current (m 400 Typ. OOutput Source Current (mA) ) utput Source Current (m 400 300 200 Typ. 300 200 100 0 -50 Max. 100 Max. 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature C) Temperature ((ooC) VBIASSupply Voltage (V) V BIAS Supply Voltage (V) Figure 22A. Output Source Current Figure 22A. Output Source Current vs. Temperature vs. Temperature Figure 22B. Output Source Current Figure 22B. Output Source Current vs. Supply Voltage 1000 Output Sink Current (m O utput Sink Current (mA) ) 1000 800 Typ. OOutput Sink Current (mA) ) utput Sink Current (m 800 600 400 Typ. 600 400 200 0 -50 Max. 200 Max. 0 -25 0 25 50 75 o (oC) 100 125 10 12 14 16 18 20 Temperature ( C) Temperature Figure 23A. Output Sink Current Figure 23A. Output Sink Current vs.Temperature vs. Temperature V BIAS Supply Voltage (V) BIAS Supply Voltage (V) Figure 23B. Output Sink Figure 23B. Output Sink Current vs. Supply Voltage vs. Supply Voltage www.irf.com 15 IRS2308(S)PbF VV S OffsetSupply Voltage (V) S Offset Supply Voltage (V) 0 -2 Typ. -4 -6 -8 -10 10 12 14 16 18 20 VBS Flouting Supply Voltage (V) (V) BS Floating Supply Voltage Figure 24. Maximum VS Negative Offset Figure24. Maximum VS Negative Offset vs. Supply Voltage vs. Supply Voltage www.irf.com 16 IRS2308(S)PbF 140 120 Temperature ( o C) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 25. IRS2308 vs. Frequency (IRFBC20), Rgate=33, VCC=15 V 140 V 70 V 0V 140 120 Temperature ( oC) 100 140 V 80 60 40 20 1 10 100 70 V 0V 1000 Frequency (kHz) Figure 26. IRS2308 vs. Frequency (IRFBC30), Rgate=22 , VCC=15 V 140 V 140 120 140 120 70 V 0V Temperature ( oC) Temperature ( oC) 100 80 60 40 20 1 10 100 140 V 70 V 0V 100 80 60 40 20 1000 1 10 100 1000 Frequency (kHz) Figure 27. IRS2308 vs. Frequency (IRFBC40), Rgate=15, VCC=15 V Frequency (kHz) Figure 28. IRS2308 vs. Frequency (IRFPE50), Rgate=10, VCC=15 V www.irf.com 17 IRS2308(S)PbF 140 120 140 120 Temperature (o C) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 29. IRS2308S vs. Frequency (IRFBC20), Rgate=33, VCC=15 V 140 V 70 V 0V Temperature ( o C) 140 V 100 80 60 40 20 1 10 100 70 V 0V 1000 Frequency (kHz) Figure 30. IRS2308S vs. Frequency (IRFBC30), Rgate=22, VCC=15 V 140 120 140 V 70 V 140 120 140 V 70 V 0 V Temperature (o C) 100 80 60 40 20 1 10 100 0V Tempreture ( o C) 100 80 60 40 20 1000 1 10 100 1000 Frequency (kHz) Figure 31. IRS2308S vs. Frequency (IRFBC40), Rgate=15, VCC=15 V Frequency (kHz) Figure 32. IRS2308S vs. Frequency (IRFPE50), Rgate=10, VCC=15 V www.irf.com 18 IRS2308(S)PbF Case outlines 8-Lead PDIP D A 5 B FOOTPRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 c 8 6 E 1 7 6 5 H 0.25 [.010] A 6.46 [.255] D E e e1 H K L 8X 1.78 [.070] 2 3 4 .050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8 6X e e1 A C 3X 1.27 [.050] y K x 45 y 0.10 [.004] 8X b 0.25 [.010] NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. A1 CAB 8X L 7 8X c 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 19 IRS2308(S)PbF Tape & Reel 8-Lead SOIC LOAD ED TA PE FEED DIRECTION B A H D F C N OT E : CO NTROLLING D IMENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M e tr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8 .1 0 0. 3 1 1 0 .3 18 B 3 .9 0 4 .1 0 0. 1 5 3 0 .1 61 C 1 1 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5 .5 5 0. 2 1 4 0 .2 18 E 6 .3 0 6 .5 0 0. 2 4 8 0 .2 55 F 5 .1 0 5 .3 0 0. 2 0 0 0 .2 08 G 1 .5 0 n/ a 0. 0 5 9 n/ a H 1 .5 0 1 .6 0 0. 0 5 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M e tr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 3 0 .2 5 1 2 .9 7 6 13 .0 0 1 B 2 0 .9 5 2 1. 45 0. 8 2 4 0 .8 44 C 1 2 .8 0 1 3. 20 0. 5 0 3 0 .5 19 D 1 .9 5 2 .4 5 0. 7 6 7 0 .0 96 E 9 8 .0 0 1 0 2 .0 0 3. 8 5 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 1 4 .5 0 1 7. 10 0. 5 7 0 0 .6 73 H 1 2 .4 0 1 4. 40 0. 4 8 8 0 .5 66 www.irf.com 20 IRS2308(S)PbF LEADFREE PART MARKING INFORMATION Part number IRxxxxxx S YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2308PbF 8-Lead SOIC IRS2308SPbF 8-Lead SOIC Tape & Reel IRS2308STRPbF The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006 www.irf.com 21 |
Price & Availability of IRS2308
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |