Part Number Hot Search : 
KTC3199M M18GXYNQ 2752A FJX3013R 024HPTM UN1213 1510W FDP3651
Product Description
Full Text Search
 

To Download IRS2308 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No.PD60266
IRS2308(S)PbF
HALF-BRIDGE DRIVER
Features
* Floating channel designed for bootstrap operation * Fully operational to +600 V * Tolerant to negative transient voltage, dV/dt
immune
Packages
* Gate drive supply range from 10 V to 20 V * Undervoltage lockout for both channels * 3.3 V, 5 V, and 15 V input logic compatible * Cross-conduction prevention logic 8-Lead SOIC IRS2308S * Matched propagation delay for both channels * Outputs in phase with inputs * Logic and power ground +/- 5 V offset. * Internal 540 ns deadtime * Lower di/dt gate driver for better Feature Comparison noise immunity Cross* RoHS compliant Deadtime Input conduction Part
8-Lead PDIP IRS2308
Description
logic
prevention logic
(ns)
Ground Pins
ton/toff (ns)
COM 220/200 HIN/LIN no none The IRS2308/IRS23084 are high volt21064 VSS/COM age, high speed power MOSFET and 2108 Internal 540 COM 220/200 HIN/LIN yes Programmable 540 - 5000 VSS/COM 21084 IGBT drivers with dependent high-side 2109 Internal 540 COM 750/200 IN/SD yes and low-side referenced output channels. Programmable 540 - 5000 VSS/COM 21094 Proprietary HVIC and latch immune yes 160/140 HIN/LIN Internal 100 COM 2304 CMOS technologies enable ruggedized 2308 HIN/LIN yes Internal 540 COM 220/200 monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
2106
Typical Connection
up to 600 V
VCC
VCC
HIN
LIN
VB HO VS LO
TO LOAD
HIN LIN COM
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2308(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL
Definition
High-side floating absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Logic input voltage (HIN & LIN ) Allowable offset supply voltage transient Package power dissipation @ TA +25 C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 -- -- -- -- -- -- -50 --
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W C/W
C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Logic input voltage Ambient temperature
Min.
V S + 10 Note 1 VS 10 0 COM -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS2308(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 C, DT = VSS unless otherwise specified.
Symbol
ton toff MT tr tf DT MDT
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff | Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO |
Min.
-- -- -- -- -- 400 --
Typ.
220 200 0 100 35 540 0
Max. Units Test Conditions
300 280 46 220 80 680 60 ns VS = 0 V VS = 0 V VS = 0 V or 600 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= VSS and TA = 25 C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic "1" input voltage for HIN & LIN Logic "0" input voltage for HIN & LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.5 -- -- -- -- 20 0.4 -- -- 8.0 7.4 0.3 97 250 -- -- 0.05 0.02 -- 60 1.0 5 1 8.9 8.2 0.7 290 600 -- 0.8 0.2 0.1 50 150 1.6 20 5 9.8 9.0 -- -- mA -- VO = 0 V, PW 10 s VO = 15 V, PW 10 s V A mA A VIN = 0 V or 5 V HIN = 5 V, LIN = 5 V HIN = 0 V, LIN = 0 V VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V
www.irf.com
3
IRS2308(S)PbF
Functional Block Diagram
VB
IR2308
HV LEVEL SHIFTER
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
PULSE GENERATOR
DT
DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT
VCC
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
www.irf.com
4
IRS2308(S)PbF
Lead Definitions
Symbol Description
HIN LIN VB HO VS VCC LO COM Logic input for high-side gate driver output (HO), in phase Logic input for low-side gate driver output (LO), in phase High-side floating supply High-side gate driver output High-side floating supply return Low-side and logic fixed supply Low-side gate driver output Low-side return
Lead Assignments
1 2 3 4 VCC HIN LIN COM VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IRS2308PbF
IRS2308SPbF
www.irf.com
5
IRS2308(S)PbF
LIN
HIN
50%
50%
LIN HIN
ton
tr 90%
toff 90%
tf
HO
LO
HO LO
10%
10%
Figure 1. Input/Output Timing Diagram
Figure 2. Switching Time Waveform Definitions
LIN
50 % 50 %
HIN
90%
HO LO
DTLO-HO
10% DTHO-LO
90%
10% MDT= DT LO-HO - DT
HO-LO
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
IRS2308(S)PbF
500
Turn-On Delay Time (ns) (ns Turn-on Delay Time Turn-On Delay Time (ns) Turn-on Delay Time (ns
500 400 300 200 100 0
-25 0 25 50 75 100 125
Typ.
400 300
Max.
Max.
200
Typ.
100 0 -50
10
12
14
16
18
20
Temperature(oC) Temperature (oC)
Figure 4A. Turn-On Time Figure 4A. Turn-On Time vs. Temperature vs. Temperature
VBIAS Supply Voltage (V) V BIAS
Figure 4B. Turn-On Time Figure 4B. Turn-On Time vs. Supply Voltage vs. Supply Voltage
500
Turn-Off Time (ns) Turn-O ffTime (ns) Turn-Off ff Time (ns ) Turn-O Time (ns)
500 400
Max.
400 300
Max.
300
Typ.
200 100 0 -50
Typ.
200 100 0
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)oC) Temperature(
VV BIASSupply Voltage (V) BIAS Supply Voltage (V)
Figure 5A. Turn-Off Propagation Delay Figure 5A. Turn-Off Propagation Delay vs. Temperature vs. Temperature
Figure 5B. Turn-Off Propagation Delay vs. Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage Supply Voltage
www.irf.com
7
IRS2308(S)PbF
500 400 300 200 100
Typ.
50 0
Turn-Onse T m e (ns) T urn-O n R iRisei Time (ns)
Turn-On Rise Time (ns)
40 0 30 0
Max.
Max.
20 0
Typ.
10 0 0
0 -50 -25 0 25 50 75 100 125
Temperature(oC)
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Fig u re 6A . T Turn-On Rise im e Figure 6A. u rn -O n R is e T Time vs .T e m p e ratu re vs. Temperature
Fig u re 6B . Turn-On Rise im e Figure 6B. T u rn -O n R is e TTime vs S u p p ly Voltage vs..Supply V o ltag e
150 100
Max.
Turn-Off Fall m e T urn-O ff F a l T iTime (ns) l
Turn-Off Fall Time (ns)
200
20 0
15 0 10 0
Max.
50
Typ.
50
Typ.
0 -50 -25 0Temperature50oC) 75 25 (
Temperature(oC)
0 100 125 10 12
VBIAS Supply Voltage (V)
14
16
18
20
Input Voltage (V)
Fig u re 7A T u rn -O ff Fall T im e Figure 7A..Turn-Off Fall Time vs. . T e m p e ratu re vs Temperature
Fig u re 7B . T u rn -O ff Fall Time Figure 7B. Turn-Off Fall T im e vs . In p u t Voltage vs. Supply vo ltag e
www.irf.com
8
IRS2308(S)PbF
1000
Deadtime (ns) (ns) Deadtime
1000 800 600 400 200
-25 0 25 50 75 100 125
Deadtime (ns) Deaduime ( ns)
800
Max.
Max.
600
Typ.
Typ.
Min.
400
Min.
200 -50
10
12
14
16
18
20
Temperature (oC) Temperature (oC)
V BIAS Supply Voltage (V) BIAS Supply Voltage (V)
Figure 8A. Deadtime vs. Supply Voltage Figure 8B. Deadtime vs Supply Voltage
Figure 8A. Deadtime vs. Temperature Figure 8A. Deadtime vs. Temperature
5
Input Voltage (V) Input Voltage (V)
5 4 3
Min.
3
Min.
Input Voltage (V) Input Voltage (V)
4
2 1 -50
2 1
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)
Temperature (oC)
V BIAS Supply Voltage (V) VBIAS Supply Voltage (V)
Figure 9B. Logic "1" Input Voltage "1" Input Voltage Figure 9B. vs. Supply Voltage vs. Supply Voltage
Figure 9A. Logic "1" Input Voltage Figure 9A. Logic "1" Input Voltage vs. Temperature vs. Temperature
www.irf.com
9
IRS2308(S)PbF
4 3
4 3 2 1
Max.
Input Voltage (V) (V) Input Voltage
2 1
Max.
Input Voltage (V) Input Voltage (V)
0 -50
0 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (oC) Temperatre (o
VBIAS Supply Voltage (V) Supply Voltage (V)
Figure 10B. Logic "0" Input Voltage Figure 10A. Logic "0" Input Voltage vs. Supply Voltage vs. Supply Voltage
Figure 10A. Logic "0" Input Voltage Figure 10A. Logic "0" Input Voltage vs. Temperature vs. Temperature
High Level utput Voltage (V) High Level OOutputVoltage (V)
High Level utput Voltage (V) High Level OOutput Voltage (V)
0.5 0.4 0.3 0.2 0.1 0.0 -50
0.5 0.4 0.3
Max.
Max.
0.2 0.1
Typ.
Typ.
0.0 10 12 14 16 18 20
-25
0
25
50
75
100
125
Temperature (oC) Temperature oC) Figure 11A. High Level Output Voltage Figure 11A. High Level Output Voltage vs. Temperature vs. Temperature
Voltage (V) VBIAS Supply Voltage (V) BAIS
Figure 11A. High Level Output Voltage Figure 11B. High Lovel Output Voltage vs. Supply Voltage vs. Supply Voltage
www.irf.com
10
IRS2308(S)PbF
Low Level Output Voltage (V) Low Level O utput Voltage (V)
Low Level Output Voltage (V) Low Level O utput Voltage (V)
0.5 0.4 0.3 0.2 0.1
Max. Typ.
0.5 0.4 0.3 0.2
Max.
0.1
Typ.
0.0 -50
0 10 12 14 16 18 20
-25
0
25
50
75
100
125
o Temperature (oC) Temperature ( C)
VBIAS Supply Voltage (V) Voltage (V) V BIAS
Figure 12A. Low Level Output Voltage Figure 12A. Low Level Output Voltage vs. Temperature vs.Temperature
Figure 12B. Low Level Output Figure 12B. Low Level Output Voltage vs. Supply Voltage vs. Supply Voltage
300 240 180 120 60
Max.
Offset Supply Leakage urrentt((A) O ffset Supply Leak age cCurrent(A) Offset Supply Leakage Current (
Offset Supply Leakage Current A) O ffset Supply Leak age Current (A) (
300 240 180 120 60
Max.
0 -50
0 0 100 200 300 400 500 600
-25
0
25
50
75
100
125
Temperature oC) Temperature ((oC)
V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Figure 13A. Offset Supply Leakage Current Current vs. Supply Voltage vs. Supply Voltage
Figure 13A. Offset Supply Leakage Figure 13A. Offset Supply Leakage Current Current vs. Temperature vs. Temperature
www.irf.com
11
IRS2308(S)PbF
300
VBS BS Supply Current ( ) V Supply Current (A) VBS Supply Current ( V BS Supply Current (A) )
300 240 180 120 60 0
-25 0 25 50 75 100 125
240 180 120 60 0 -50
Max.
Max. Typ. Min.
Typ. Min.
10
12
14
16
18
20
Temperature Temperature
oC) (oC)
V Supply Voltage (V) VBS Supply Voltage (V) BS
Figure 14A. V BS Supply Current Supply Current Figure 14A. vs. Temperature
Figure 14B. VBS Supply Current Figure vs. Supply Voltage 14B. V BS Supply Current vs. Supply Voltage
3.0
VVCC Supply Current (mA) ) C C Supply Current (m
VVCCSupply Current(mA)) CC Supply Current (m
3 2.4 1.8 1.2
Max.
2.4 1.8 1.2
Typ. Max.
0.6
Min.
0.6 0
Typ. Min.
0.0 -50
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature oC) Temperature (oC)
Supply Voltage (V) VCC Supply Voltage (V)
Figure 15A. V CC Supply Current Figure 15A. VCC Supply Current vs. Temperature vs. Temperature
Figure 15B. V CC Supply Current Figure 14B. VCC Supply Current vs. Supply Voltage vs. Supply Voltage
www.irf.com
12
IRS2308(S)PbF
50 Logic "1" Input Current A) ( 40 30 20
Max.
50
Logic "1" Input Current ( Logic "1" Input Current (A) )
Logic "1" Input Current (A)
40 30
Max.
20 10 0
10
Typ.
Typ.
0 -50
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature C) Temperature ((ooC)
VCC Supply Voltage (V) VCC Supply Voltage (V)
Figure 16A. Logic "1" Input Current Figure 16A. Logic "1" Input Current vs. Temperature vs. Temperature
Figure 16B. Logic "1" Input Current Figure 16B. Logic "1" Input Current vs. Supply Voltage vs. Supply Voltage
Logic "0" Input Current (A) Logic "0" Input Bias Current (A)
Logic "0" Input Bias Current (A)
6 5 4 3 2
Typ. Max.
6 5 4 3 2
Typ. Max.
Logic "0" Input Current (A)
Max
Max
1 0 -50
1 0 10 12 14 16 18 20
-25
0
25
50
75
100
125
Temperature (oC)
Supply Voltage (V)
Figure 17A. Logic "0" Input Bias Current vs. Temperature
Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage
www.irf.com
13
IRS2308(S)PbF
UVLO Thres hold (+) (V) VVcc UVLO Threshold (+) (V) CC
11 10
Max.
Vcc UVLO Threshold (V) V C C UVLO Threshold (-) (-) (v )
12
11 10 9 8 7 6 -50
Max.
9
Typ.
Typ.
8
Min.
Min.
7 -50
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
Temperature (oC) Temperature ( C) Figure 18. Vcc Undervoltage Threshold (+) Figure 18. V CC Undervoltage Threshold (+) vs. Temperature vs. Temperature
oC) Temperature (oC)
Figure 19. Vcc Undervoltage Threshold (-) Figure 19. V CC Undervoltage Threshold (-) vs. Temperature vs. Temperature
VVBSUVLO Thres hold(+) (V) BS UVLO Threshold (+) (v)
11 10
Max.
VBS UVLO Threshold (-) (-) (V) V BS UVLO Thres hold (V)
12
11 10 9 8 7 6 -50
Max.
9
Typ.
Typ.
8
Min.
Min.
7 -50
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
Temperature (oC) Temperature (o
o C) Temperature (oC)
Figure 20. BS Undervoltage Figure 20. VV BSUndervoltage Threshold (+) (+) vs. Temperature vs. Temperature
Figure 21. VBS Undervoltage Threshold Figure 21. V BS Undervoltage Threshold (-)(-) vs. Temperature vs. Temperature
www.irf.com
14
IRS2308(S)PbF
500
500
OOutput SourceCurrent (mA) ) utput Source Current (m
400
Typ.
OOutput Source Current (mA) ) utput Source Current (m
400 300 200
Typ.
300 200 100 0 -50
Max.
100
Max.
0
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature C) Temperature ((ooC)
VBIASSupply Voltage (V) V BIAS Supply Voltage (V)
Figure 22A. Output Source Current Figure 22A. Output Source Current vs. Temperature vs. Temperature
Figure 22B. Output Source Current Figure 22B. Output Source Current vs. Supply Voltage
1000
Output Sink Current (m O utput Sink Current (mA) )
1000
800
Typ.
OOutput Sink Current (mA) ) utput Sink Current (m
800 600 400
Typ.
600 400 200 0 -50
Max.
200
Max.
0
-25
0
25
50
75
o (oC)
100
125
10
12
14
16
18
20
Temperature ( C) Temperature Figure 23A. Output Sink Current Figure 23A. Output Sink Current vs.Temperature vs. Temperature
V BIAS Supply Voltage (V) BIAS Supply Voltage (V) Figure 23B. Output Sink Figure 23B. Output Sink Current vs. Supply Voltage vs. Supply Voltage
www.irf.com
15
IRS2308(S)PbF
VV S OffsetSupply Voltage (V) S Offset Supply Voltage (V)
0 -2
Typ.
-4 -6 -8 -10 10 12 14 16 18 20
VBS Flouting Supply Voltage (V) (V) BS Floating Supply Voltage Figure 24. Maximum VS Negative Offset Figure24. Maximum VS Negative Offset vs. Supply Voltage vs. Supply Voltage
www.irf.com
16
IRS2308(S)PbF
140 120 Temperature ( o C) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 25. IRS2308 vs. Frequency (IRFBC20), Rgate=33, VCC=15 V
140 V 70 V 0V
140 120
Temperature ( oC)
100
140 V
80 60 40 20 1 10 100
70 V 0V
1000
Frequency (kHz) Figure 26. IRS2308 vs. Frequency (IRFBC30), Rgate=22 , VCC=15 V
140 V
140 120
140 120
70 V
0V
Temperature ( oC)
Temperature ( oC)
100 80 60 40 20 1 10 100
140 V 70 V 0V
100 80 60 40 20
1000
1
10
100
1000
Frequency (kHz) Figure 27. IRS2308 vs. Frequency (IRFBC40), Rgate=15, VCC=15 V
Frequency (kHz) Figure 28. IRS2308 vs. Frequency (IRFPE50), Rgate=10, VCC=15 V
www.irf.com
17
IRS2308(S)PbF
140 120
140 120
Temperature (o C)
100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 29. IRS2308S vs. Frequency (IRFBC20), Rgate=33, VCC=15 V
140 V 70 V 0V
Temperature ( o C)
140 V
100 80 60 40 20 1 10 100
70 V 0V
1000
Frequency (kHz) Figure 30. IRS2308S vs. Frequency (IRFBC30), Rgate=22, VCC=15 V
140 120
140 V 70 V
140 120
140 V 70 V 0 V
Temperature (o C)
100 80 60 40 20 1 10 100
0V
Tempreture ( o C)
100 80 60 40 20
1000
1
10
100
1000
Frequency (kHz) Figure 31. IRS2308S vs. Frequency (IRFBC40), Rgate=15, VCC=15 V
Frequency (kHz) Figure 32. IRS2308S vs. Frequency (IRFPE50), Rgate=10, VCC=15 V
www.irf.com
18
IRS2308(S)PbF
Case outlines
8-Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
DIM A b
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040 c
8 6 E 1
7
6
5 H 0.25 [.010] A
6.46 [.255]
D E e e1 H K L
8X 1.78 [.070]
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X e
e1 A C
3X 1.27 [.050]
y
K x 45 y
0.10 [.004] 8X b 0.25 [.010]
NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
A1 CAB
8X L 7
8X c
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
19
IRS2308(S)PbF
Tape & Reel 8-Lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D
F
C
N OT E : CO NTROLLING D IMENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M e tr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8 .1 0 0. 3 1 1 0 .3 18 B 3 .9 0 4 .1 0 0. 1 5 3 0 .1 61 C 1 1 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5 .5 5 0. 2 1 4 0 .2 18 E 6 .3 0 6 .5 0 0. 2 4 8 0 .2 55 F 5 .1 0 5 .3 0 0. 2 0 0 0 .2 08 G 1 .5 0 n/ a 0. 0 5 9 n/ a H 1 .5 0 1 .6 0 0. 0 5 9 0 .0 62
F
D
C B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M e tr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 3 0 .2 5 1 2 .9 7 6 13 .0 0 1 B 2 0 .9 5 2 1. 45 0. 8 2 4 0 .8 44 C 1 2 .8 0 1 3. 20 0. 5 0 3 0 .5 19 D 1 .9 5 2 .4 5 0. 7 6 7 0 .0 96 E 9 8 .0 0 1 0 2 .0 0 3. 8 5 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 1 4 .5 0 1 7. 10 0. 5 7 0 0 .6 73 H 1 2 .4 0 1 4. 40 0. 4 8 8 0 .5 66
www.irf.com
20
IRS2308(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx S YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2308PbF 8-Lead SOIC IRS2308SPbF 8-Lead SOIC Tape & Reel IRS2308STRPbF
The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006
www.irf.com
21


▲Up To Search▲   

 
Price & Availability of IRS2308

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X