Part Number Hot Search : 
MA2SP06 ELECTRO GNTRP 222MPD MB90340 3LASP XC1700EL MORS2W
Product Description
Full Text Search
 

To Download TSV621 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSV621
Rail-to-rail input/output 29 A 420 kHz CMOS operational amplifiers
Features

Low supply voltage: 1.5 V-5.5 V Rail-to-rail input and output Low input offset voltage: 800 V max (A version) Low power consumption: 29 A typ Gain bandwidth product: 420 kHz typ Unity gain stability Micropackages: SC70-5, SOT23-5 Low input bias current: 1 pA typ Extended temperature range: -40 to +125 C 4 kV HBM
In+ 1 VDD 2 In- 3
5 VCC
+ _
4 Out
TSV621ICT/ILT SC70-5/SOT23-5
This operational amplifier is unity gain stable for capacitive loads up to 100 pF. The device is internally adjusted to provide very narrow dispersion of AC and DC parameters, especially power consumption, product gain bandwidth and slew rate. The TSV621 presents a high tolerance to ESD, sustaining 4 kV for the human body model. Additionally, the TSV621 is offered in SC70-5 and SOT23-5 micropackages, with extended temperature ranges from -40 C to +125 C. All these features make the TSV621 ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.
Applications

Battery-powered applications Portable devices Signal conditioning Active filtering Medical instrumentation
Description
The TSV621 is a single operational amplifier offering low voltage, low power operation and railto-rail input and output. With a very low input bias current and low offset voltage (800 V maximum for the A version), the TSV621 is ideal for applications that require precision. The device can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suits battery-powered devices and extends battery life. This product features an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth while consuming only 29 A at a 5-V supply voltage.
January 2009
Rev 1
1/18
www.st.com 18
Absolute maximum ratings and operating conditions
TSV621
1
Absolute maximum ratings and operating conditions
Table 1.
Symbol VCC Vid Vin Iin Tstg Rthja Tj ESD Supply voltage
(1) (2)
Absolute maximum ratings (AMR)
Parameter Value 6 VCC VDD-0.2 to VCC+0.2 10 -65 to +150
(5)(6)
Unit V V V mA C
Differential input voltage Input voltage Input current
(3) (4)
Storage temperature Thermal resistance junction to ambient SC70-5 SOT23-5 Maximum junction temperature HBM: human body MM: machine model(7) model(9) model(8)
205 250 150 4 300 1.5 200
C/W
C kV V kV mA
CDM: charged device Latch-up immunity
1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. Vcc-Vin must not exceed 6 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 k resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
Table 2.
Symbol VCC Vicm Toper
Operating conditions
Parameter Supply voltage Common mode input voltage range Operating free air temperature range Value 1.5 to 5.5 VDD -0.1 to VCC +0.1 -40 to +125 Unit V V C
2/18
TSV621
Electrical characteristics
2
Table 3.
Symbol
Electrical characteristics
Electrical characteristics at VCC = +1.8 V with VDD = 0 V, Vicm = VCC/2, Tamb = 25 C, and RL connected to VCC/2 (unless otherwise specified)
Parameter Conditions Min. Typ. Max. Unit
DC performance TSV621 TSV621A Vio Offset voltage Tmin < Top < Tmax TSV621 TSV621A 2 1 Tmin < Top < Tmax 1 1 Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V Tmin < Top < Tmax RL= 10 k Vout= 0.5 V to 1.3 V , Tmin < Top < Tmax High level output voltage RL = 10 k Tmin < Top < Tmax Low level output voltage RL = 10 k Tmin < Top < Tmax Isink Iout Isource Vo = 1.8 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax ICC Supply current (per operator) No load, Vout = VCC/2 Tmin < Top < Tmax 6 4 6 4 25 31 33 A 10 mA 12 mA 53 51 78 73 35 50 4 35 mV 50 5 mV 95 dB 1 74 dB 10
(1)
4 0.8 mV 6 2.8 V/C pA 100 10(1) pA 100
DVio Iio
Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (Vic/Vio) Large signal voltage gain
Iib
CMR
Avd
VOH
VOL
AC performance GBP Fu m Gm SR Gain bandwidth product Unity gain frequency Phase margin Gain margin Slew rate RL = 10 k CL = 100 pF, , f = 100 kHz RL = 10 k CL = 100 pF , RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF, Av = 1 0.084 275 340 280 45 9 0.11 0.14 kHz kHz Degrees dB V/s
1. Guaranteed by design.
3/18
Electrical characteristics Table 4.
Symbol DC performance TSV621 TSV621A Vio Offset voltage Tmin < Top < Tmax TSV621 TSV621A 2 1 Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (Vic/Vio) Large signal voltage gain 0 V to 3.3 V, Vout = 1.75 V Tmin < Top < Tmax RL=10 k Vout = 0.5 V to 2.8 V , Tmin < Top < Tmax High level output voltage RL = 10 k Tmin < Top < Tmax Low level output voltage RL = 10 k Tmin < Top < Tmax Isink Iout Isource Vo = 5 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax ICC Supply current (per operator) No load, Vout = 2.5 V Tmin < Top < Tmax 30 25 30 25 26 33 35 38 45 57 53 81 76 35 50 4 35 5 98 1 79 100 1 1 Iib 10(1) 100 10(1) 4 0.8
TSV621
VCC = +3.3 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified)
Parameter Min. Typ. Max. Unit
mV 6 2.8 V/C pA pA pA pA dB dB dB dB mV
DVio Iio
Input offset voltage drift Input offset current
CMR
Avd
VOH
VOL
mV 50 mA
mA A A
AC performance GBP Fu m Gm SR Gain bandwidth product Unity gain frequency Phase margin Gain margin Slew rate , RL = 10 k CL = 100 pF, f = 100 kHz RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF RL = 10 k CL = 100 pF, AV = 1 , 0.094 310 380 310 45 9 0.12 kHz kHz Degrees dB V/s
1. Guaranteed by design.
4/18
TSV621 Table 5.
Symbol DC performance TSV621 TSV621A Vio Offset voltage Tmin < Top < Tmax TSV621 TSV621A
Electrical characteristics VCC = +5 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified)
Parameter Min. Typ. Max. Unit
4 0.8 mV 6 2.8 2 1 10(1) 100 10(1) 100 V/C pA pA pA pA dB
DVio Iio
Input offset voltage drift Input offset current Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (Vic/Vio) 0 V to 5 V, Vout = 2.5 V Tmin < Top < Tmax 60 55 75 73 85 80 35 50
1 1
Iib
1 80
CMR
SVR
Supply voltage rejection ratio 20 VCC = 1.8 to 5 V log (VCC/Vio) Tmin < Top < Tmax Large signal voltage gain RL=10 k Vout = 0.5 V to 4.5 V , Tmin < Top < Tmax High level output voltage RL = 10 k Tmin < Top < Tmax Low level output voltage RL = 10 k Tmin < Top < Tmax Isink Vo = 5 V Tmin < Top < Tmax Vo = 0 V Tmin < Top < Tmax No load, Vout = 2.5 V Tmin < Top < Tmax
102
dB
98
dB
Avd
7 mV 6 35 mV 50
VOH
VOL
40 35 40 35
69 mA 65 74 mA 68 29 36 38 A A
Iout Isource
ICC
Supply current (per operator)
AC performance GBP Fu m Gm SR Gain bandwidth product Unity gain frequency Phase margin Gain margin Slew rate RL = 10 k CL = 100 pF, , f = 100 kHz RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF RL = 10 k, CL = 100 pF , RL = 10 k CL = 100 pF, AV = 1 0.108 350 420 360 45 9 0.14 kHz kHz Degrees dB V/s
5/18
Electrical characteristics Table 5.
Symbol en THD
TSV621
VCC = +5 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 C, RL connected to VCC/2 (unless otherwise specified) (continued)
Parameter Equivalent input noise voltage Total harmonic distortion f = 1 kHz Av = 1, f = 1 kHz, RL= 100 k, Vicm = Vcc/2, Vout = 2 Vpp Min. Typ. 70 0.004 Max. Unit
nV ----------Hz
%
1. Guaranteed by design.
6/18
TSV621
Electrical characteristics
Figure 1.
0.5 0.4
Input Offset Voltage (mV)
Input offset voltage vs input common mode at VCC = 1.5 V
Figure 2.
Input offset voltage vs input common mode at VCC = 5 V
0.4
Input Offset Voltage (mV)
0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Input Common Mode Voltage (V) 1.6
0.2
0.0
-0.2
-0.4 0.0 1.0 2.0 3.0 4.0 Input Common Mode Voltage (V) 5.0
Figure 3.
Supply current vs. supply voltage at Vicm = VCC/2
Figure 4.
Output current vs. output voltage at VCC = 1.5 V
Figure 5.
Output current vs. output voltage at Figure 6. VCC = 5 V
Voltage gain and phase vs. frequency at Vcc = 1.5 V
Gain (dB)
Phase ()
7/18
Electrical characteristics Figure 7. Voltage gain and phase vs. frequency at VCC = 5 V Figure 8.
TSV621 Phase margin vs. output current at VCC = 1.5 V and VCC = 5 V
90 80 70 Vcc=5V
Gain (dB)
60
Phase ()
50 40 30 20 10 0 -1.5 Vicm=Vcc/2, Cl=100pF Rl=4.7kohms, T=25 C -1.0 -0.5 0.0 0.5
Vcc=1.5V
1.0
1.5
Figure 9.
Slew rate vs. supply voltage
Figure 10. Slew rate vs. supply voltage
Slew rate (V/ s)
10V/div
Supply voltage (V)
Figure 11. Distortion + noise vs. output voltage
Figure 12. Distortion + noise vs. frequency
1
Vcc=1.5V Rl=10kohms
THD + N (%)
Vcc=1.5V Rl=10k Vcc=1.5V Rl=100k
Vcc=1.5V Rl=100kohms
THD + N (%)
0.1
f=1kHz Gain=1 BW=22kHz Vicm=Vcc/2
Vcc=5.5V Rl=10kohms Vcc=5.5V Rl=100kohms
0.01
10
Output Voltage (Vpp)
100
1000
10000
8/18
TSV621
Electrical characteristics
Figure 13. Noise vs. frequency
Input equivalent noise density (nV/VHz)
Vicm=4.5V
Vicm=2.5V
Vcc=5V T=25 C
Frequency (Hz)
9/18
Application information
TSV621
3
3.1
Application information
Operating voltages
The TSV621 can operate from 1.5 to 5.5 V. Its parameters are fully specified for 1.8-, 3.3and 5-V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV621 characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 C to +125 C.
3.2
Rail-to-rail input
The TSV621 is built with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input, and the input common mode range is extended from VDD -0.1 V to VCC +0.1 V. The transition between the two pairs appear at VCC -0.7 V. In the transition region, the performance of CMRR, PSRR, Vio and THD is slightly degraded (as shown in Figure 14 and Figure 15 for Vio vs. Vicm).
Figure 14. Input offset voltage vs input common mode at VCC = 1.5 V
0.5 0.4
Input Offset Voltage (mV)
Figure 15. Input offset voltage vs input common mode at VCC = 5 V
0.4
Input Offset Voltage (mV)
0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Input Common Mode Voltage (V) 1.6
0.2
0.0
-0.2
-0.4 0.0 1.0 2.0 3.0 4.0 Input Common Mode Voltage (V) 5.0
The device is guaranteed without phase reversal.
3.3
Rail-to-rail output
The operational amplifier's output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k resistive load to VCC/2.
10/18
TSV621
Application information
3.4
Optimization of DC and AC parameters
This device uses an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 A typical, min/max at 17%). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.15 V/s min).
3.5
Driving resistive and capacitive loads
These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k For lower resistive loads, the THD level may significantly . increase. In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series resistor at the output can improve the stability of the device (see Figure 16 for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model. Figure 16. In-series resistor vs. capacitive load
3.6
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.
In-series resistor ()
11/18
Application information
TSV621
3.7
Macromodel
An accurate macromodel of TSV621 is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.
12/18
TSV621
Package information
4
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark.
13/18
Package information
TSV621
4.1
SOT23-5 package mechanical data
Figure 17. SOT23-5L package mechanical drawing
Table 6.
SOT23-5L package mechanical data
Dimensions
Ref. Min. A A1 A2 B C D D1 e E F L K 2.60 1.50 0.10 0 0.90 0.35 0.09 2.80 0.90
Millimeters Typ. 1.20 Max. 1.45 0.15 1.05 0.40 0.15 2.90 1.90 0.95 2.80 1.60 0.35 3.00 1.75 0.60 10 0.102 0.059 0.004 1.30 0.50 0.20 3.00 0.035 0.013 0.003 0.110 Min. 0.035
Inches Typ. 0.047 Max. 0.057 0.006 0.041 0.015 0.006 0.114 0.075 0.037 0.110 0.063 0.013 0.118 0.069 0.023 0.051 0.019 0.008 0.118
14/18
TSV621
Package information
4.2
SC70-5 (or SOT323-5) package mechanical data
Figure 18. SC70-5 (or SOT323-5) package mechanical drawing
SIDE VIEW DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 7.
SC70-5 (or SOT323-5) package mechanical data
Dimensions
Ref Min A A1 A2 b c D E E1 e e1 L < 0.26 0 0.80 0.15 0.10 1.80 1.80 1.15 0.80
Millimeters Typ Max 1.10 0.10 0.90 1.00 0.30 0.22 2.00 2.10 1.25 0.65 1.30 0.36 0.46 8 0.010 2.20 2.40 1.35 0.315 0.006 0.004 0.071 0.071 0.045 Min 0.315
Inches Typ Max 0.043 0.004 0.035 0.039 0.012 0.009 0.079 0.083 0.049 0.025 0.051 0.014 0.018 0.087 0.094 0.053
15/18
Ordering information
TSV621
5
Ordering information
Table 8. Order codes
Temperature range -40C to +125C -40C to +125C Package SOT23-5 SC70-5 Packing Tape & reel Tape & reel Marking K106 K16
Part number TSV621ILT TSV621ICT
16/18
TSV621
Revision history
6
Revision history
Table 9.
Date 12-Jan-2009
Document revision history
Revision 1 Initial release. Changes
17/18
TSV621
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
18/18


▲Up To Search▲   

 
Price & Availability of TSV621

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X