Part Number Hot Search : 
BDT64F 2SK2601 PS9324L2 2SK2601 81200 2123U ON0481 GP1U782R
Product Description
Full Text Search
 

To Download MUSES01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MUSES01
High Quality Audio , J-FET Input, Dual Operational Amplifier
The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound.
FEATURES Operating Voltage Output noise Input Offset Voltage Input Bias Current Voltage Gain Slew Rate Bipolar Technology Package Outline
Vopr=9V to 16V 9.5nV/Hz at f=1kHz 0.8mV typ. 5mV max. 200pA typ. 800pA max. at Ta=25C 105dB typ. 12V/s typ. DIP8
PIN CONFIGURATION
PIN FUNCTION
1 2 3 4 8
PACKAGE OUTLINE
-+ +-
7 6 5
1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+
MUSES01D
MUSES and this logo are trademarks of New Japan Radio Co., Ltd.
Ver.2009-12-18
-1-
MUSES01
ABSOLUTE MAXIMUM RATINGS (Ta=25C)
PARAMETER Supply Voltage Common Mode Input Voltage Differential Input Voltage Power Dissipation Output Current Operating Temperature Range Storage Temperature Range SYMBOL V+/VVICM VID PD IO T opr T stg RATING 18 15 (Note1) 30 910 25 -40 to +85 -50 to +150 UNIT V V V mW mA C C
(Note1) For supply Voltages less than 15 V, the maximum input voltage is equal to the Supply Voltage.
RECOMMENDED OPERATING CONDITION (Ta=25C)
PARAMETER Supply Voltage SYMBOL V+/VTEST CONDITION MIN. 9 TYP. MAX. 16 UNIT V
ELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V+/V-=15V, Ta=25C unless otherwise specified)
PARAMETER Operating Current Input Offset Voltage Input Bias Current Input Offset Current Voltage Gain Common Mode Rejection Ratio Supply Voltage Rejection Ratio Max Output Voltage 1 Max Output Voltage 2 Input Common Mode Voltage Range SYMBOL I cc V IO IB I IO AV CMR SVR V OM1 V OM2 V ICM TEST CONDITION No Signal, R L = Rs10k (Note2, 3) (Note2, 3) (Note2, 3) R L 2k, V o =10V V ICM =8V (Note4) V /V =9.0 to 16.0V (Note2, 5) R L =10k R L =2k CMR60dB
+ -
MIN. 90 60 70 12 10 8
TYP. 8.5 0.8 200 100 105 75 83 13.5 12.5 9.5
MAX. 12.0 5.0 800 400 -
UNIT mA mV pA pA dB dB dB V V V
(Note2) Measured at VICM=0V (Note3) Written by the absolute rate. (Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to -8V) (Note5) SVR is calculated by specified change in offset voltage. (V+/V-=9V to 16V)
-2-
Ver.2009-12-18
MUSES01
AC CHARACTERISTICS (V+/V-=15V, Ta=25C unless otherwise specified)
PARAMETER Gain Bandwidth Product Unity Gain Frequency Phase Margin Input Noise Voltage1 Input Noise Voltage2 Total Harmonic Distortion Channel Separation Positive Slew Rate Negative Slew Rate SYMBOL GB fT M V NI V N2 THD CS +SR -SR TEST CONDITION f=10kHz AV=+100, RS=100, RL=2k, CL=10pF AV=+100, RS=100, RL=2k,CL=10pF f=1kHz, AV=+100, RS=100 RIAA, RS =2.2k, 30kHz LPF f=1kHz, AV=+10, RL=2k, Vo=5Vrms f=1kHz, AV=-+100, RS=1k, RL=2k AV=1, VIN=2Vp-p, RL=2k, CL=10pF AV=1, VIN=2Vp-p, RL=2k, CL=10pF MIN. TYP. 3.3 3.0 60 9.5 1.2 0.002 150 12 13 MAX. 3.0 UNIT MHz MHz deg nV/Hz Vrms % dB V/s V/s
Ver.2009-12-18
-3-
MUSES01
Application Notes
*Package Power, Power Dissipation and Output Power
IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25C to it on 25C. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power
PD =
Tjmax - Ta ja
[W] (Ta=25C to Ta=150C)
Where, ja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES01 is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) - (Output Power Po) The MUSES01 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design.
PD [mW] DIP8
910
Ta [deg] -40 25 85 (Topr max.) 150 (Tstg max.)
Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01
-4-
Ver.2009-12-18
MUSES01
TYPICAL CHARACTERISTICS
TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E F R E Q U E N C Y T
V + /V -= ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25 16V
TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E F R E Q U E N C Y T
V + /V -= ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25 15V
10 1
T H D + N oi [ ] se %
T H D + N oi [ ] se %
10 1 0. 1
0.1
f= 20kH z
f= 20kH z
0. 01
1kH z
0. 01
1kH z 100H z 20H z
0. 001 0.0001 0.01 0. 1
100H z 20H z
0. 001 0. 0001
1
10
0. 01
0. 1
1
10
O ut put A m plt i ude [ rm s] V
TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E F R E Q U E N C Y T
V + /V -= ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25 9V
O ut put A m plt i ude [ rm s] V
E Q U I A LE N T I P U T N O I E D E N S I Y vs V N S T FR E Q U E N C Y 80 70
V + /V -= ,A V = + 100,R s= 100ohm ,R L = a= 25 16V ,T
10 1
N oi D ensi y [ / H z] se t nV
60 50 40 30 20 10 0
T H D + N oi [ ] se %
0. 1
f= 20kH z
0. 01
1kH z 100H z 20H z
0. 001 0.0001 0. 01 0.1
1
10
1
10
100 F requency [ z] H
1, 000
10, 000
O ut put A m plt i ude [ rm s] V
E Q U I A LE N T I P U T N O I E D E N S I Y vs V N S T FR E Q U E N C Y 80 70
V + /V -= ,A V = + 100,R s= 100ohm ,R L = a= 25 15V ,T
E Q U I A LE N T I P U T N O IS E D E N S I Y vs V N T FR E Q U E N C Y
V + /V -= ,A V = + 100,R s= 100ohm ,R L = a= 25 9V ,T
80 70
N oi D ensi y [ / H z] se t nV
N oi D ensiy [ / H z] se t nV
60 50 40 30 20 10 0 1 10 100 F requency [ z] H 1, 000 10, 000
60 50 40 30 20 10 0 1 10 100 F requency [H z] 1, 000 10,000
Ver.2009-12-18
-5-
MUSES01
C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O
V + /V -= ,A V =-100, R S =1kohm , R L = 2kohm , V o= 5V rm s, T a= 25 16V
C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O
V + /V -= ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 5V rm s, T a= 25 15V
-120 -130
-120 -130
C hannel S eparat on [ ] i dB
C hannel S eparat on [ ] i dB
-140 -150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000
-140 -150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000
C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O
V + /V -= ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 4V rm s, T a= 25 9V
C LO S E D -LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E )
V + /V -= , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF 16V
-120 -130
60
G ai n
V IN = -30dB m ,V i = 0V cm
180 120 60
40
T a25 -40
C hannel S eparat on [ ] i dB
V ol age G ai [ ] t n dB
20
P hase
-150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000
0 -20 -40 -60 1 10
85
0 -60
-120 -180 100 1000 10000 100000
F requency [ z] kH C LO S E D LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E )
V + /V -= , A V = + 100, R S = 100ohm , R T = 50ohm , R L = 2kohm ,C L = 10pF 9V
C LO S E D -LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E )
V + /V -= , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF 15V
60
G ai n
V IN = -30dB m ,V i = 0V cm
180 120
60
G ai n
V IN = -30dB m ,V i = 0V cm
180 120 60
40
T a25 -40
40
T a25 -40
V ol age G ai [ ] t n dB
V ol age G ai [ ] t n dB
P hase S hi t [ f deg]
20
P hase
60 0 -60
20
P hase
0 -20 -40 -60 1 10
85
0 -20 -40 -60 1 10
85
0 -60
-120 -180 100 1000 10000 100000
-120 -180 100 1000 10000 100000
F requency [ z] kH
F requency [ z] kH
-6-
Ver.2009-12-18
P hase S hi t [ f deg]
P hase S hi t [ f deg]
-140
MUSES01
T R A N S I N T R E S P O N S E (T E M P E R A T U R E ) E
V + /V - ,V IN 2V P -P ,f= 100kH z 16V P ul seE dge= 10nsec,G v= 0dB ,C L =10pF , L = 2kohm R
S LE W R A T E vs T E M P E R A T U R E
V + /V - ,V IN 2V P -P ,f=100kH z 16V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE
6
Input V ol tage
2 1
20
5 4
O ut put V ol age [ ] t V
16
F al l
0 -1
T a=25 -40 85
3 2 1 0 -1
O utput V ol tage
S l R at [ / sec] ew e V
I nput V ol age [ ] t V
12
-2 -3 -4 -5 -6
8
Ri se
4
-2 -2 -1 0 1 2 3 4 5 6 7 8 9
0 -50 -25 0 25 50 75 100 125 150
T i e [ m sec]
T em perature []
T R A N S IE N T R E S P O N S E (T E M P E R A T U R E )
V /V ,V IN 2V P -P ,f= 100kH z 15V P ul dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm seE
+ -
S LE W R A T E vs T E M P E R A T U R E
V + /V - ,V IN 2V P -P ,f=100kH z 15V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE
6
Input V ol tage
2 1
20
5 4
O ut put V ol age [ ] t V
16 0 -1
T a=25 -40 85
F al l
3 2 1 0 -1
O utput V ol tage
S l R at [ / sec] ew e V
I nput V ol age [ ] t V
12
-2 -3 -4 -5 -6
8
Ri se
4
-2 -2 -1 0 1 2 3 4 5 6 7 8 9
0 -50 -25 0 25 50 75 100 125 150
T i e [ sec] m
T em perature []
S LE W R A T E vs T E M P E R A T U R E
V + /V - ,V IN 2V P -P ,f= 100kH z 9V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE
T R A N S IE N T R E S P O N S E (T E M P E R A T U R E )
V + /V - ,V IN 2V P -P ,f= 100kH z 9V P ul seE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm
6
Input V ol tage
2 1
S l R at [ / sec] ew e V
20
5 4
O ut put V ol age [ ] t V
16
I nput V olage [ ] t V
F al l
0 -1
T a=25 -40 85
3 2 1 0 -1
O utput V ol tage
12
-2 -3 -4 -5 -6
8
Ri se
4
-2 -2 -1 0 1 2 3 4 5 6 7 8 9
0 -50 -25 0 25 50 75 100 125 150
T i e [ sec] m
T em perature []
Ver.2009-12-18
-7-
MUSES01
SUPPLY CURRENT vs SUPPLY VOLTAGE (TEMPERATURE)
GV=0dBVin=0V
SUPPLY CURRENT vs TEMPERATURE (SUPPLY VOLTAGE)
GV=0dBVin=0V
12 Ta=25 10 -40
12 16V 10 V /V =15V
+ -
Supply Current [mA]
Supply Current [mA]
8
8
6 85 4
6 9V 4
2
2
0 0 3 6 9 12 Supply Voltage [V+/V-] 15 18
0 -50
-25
0
25 50 75 Temperature []
100
125
150
INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE (TEMPERATURE)
VICM=0V,Vin=0V
POWER SUPPLY REJECTION RATIO vs TEMPERATURE 100 90
V ICM=0V V+/V-=9V to 16V
5 4
Power Supply Rejection Ratio dB
14 16 18
3
-40 Ta25
80 70 60 50 40 30 20 10
Input Offset Voltage mV
2 1 0 -1 -2 -3 -4 -5 0 2 4 6 8 10
+
85
12
-
0 -50 -25 0 25 50 75 Temperature 100 125 150
Supply Voltage V /V
INPUT BIAS CURRENT vs TEMPERATURE (SUPPLY VOLTAGE)
V ICM=0V
INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000
V+ /V -=16V
1,000,000
100,000
100,000
Input Bias Current pA
10,000 V+/V-=15V 1,000 16V 100
Input Bias Current [pA]
10,000 85 1,000 Ta=25 100
10
9V
10 -40
1 -50 -25 0 25 50 75 Temperature [] 100 125 150
1 -16 -12 -8 -4 0 4 8 Common-Mode Votage [V] 12 16
-8-
Ver.2009-12-18
MUSES01
INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000
V /V =15V
+ -
INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000
V /V =9V
+ -
100,000
100,000
Input Bias Current [pA]
Input Bias Current [pA]
10,000 85 1,000 Ta=25 100
10,000 85 1,000 Ta=25
100
10 -40 1 -15 -12 -9 -6 -3 0 3 6 9 Common-Mode Voltage [V] 12 15
10 -40 1 -9 -6 -3 0 3 Cmmon-Mode Voltage [V] 6 9
INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE)
V ICM=0V
IN P U T O F F S E T V O LT A G E vs O U T P U T V O LT A G E (T E M P E R A T U R E )
V + /V -= R L = 2kohm to 0V 15V
10,000
5 4
1,000
I nput O f set V ol age [ V ] f at m
Input Offset Current pA
3 2 1 0 -1 -2 -3 -4 -5
85
-40
T a25
V+/V-=15V 100 16V 10
9V 1 -50 -25 0 25 50 75 Temperature [] 100 125 150
-16
-12
-8
-4
0
4
8
12
16
O utput V ol tage [V ]
O P E N -LO O P V O LT A G E G A I vs T E M P E R A T U R E N
O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E
R L = 2kohm to 0V V + /V -= V o= -11V to + 11V 16V
R L = 2kohm to 0V V + /V -= V o= -10V to + 10V 15V
120 110
120 110 100
O pen-Loop V ol age G ai [ ] t n dB
O pen-Loop V ol age G ai [ ] t n dB
100 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150
90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150
T em perat ure [ ]
T em perat ure [ ]
Ver.2009-12-18
-9-
MUSES01
O P E N -LO O P V O LT A G E G A I vs T E M P E R A T U R E N
R L = 2kohm to 0V V + /V -= V o= -4V t + 4V 9V o
120 110
COMMON-MODE REJECTION RATIO vs TEMPERATUER INPUT COMMON-MODE VOLTAGE V+ /V- =16V
100
O pen-Loop V ol age G ai [ ] at n dB
100
Common-Mode Rejection Ratio [dB]
90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150
80
0V to +9V
60 Vicm=0V to -9V 40
20
0 -50 -25 0 25 50 75 Temperature [] 100 125 150
T em perat ure [ ]
COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V +/V- =15V
COMMON-MODE REJECTION RATIO vs TEMPERATURE INPUT COMMON-MODE VOLTAGE V + /V - =9V
100
100 0V to +2V
Common-Mode Rejection Ratio [dB]
80
Common-Mode Rejection Ratio [dB]
80
60 Vicm=0V to -8V 40
0V to +8V
60 Vicm=0V to -2V 40
20
20
0 -50 -25 0 25 50 75 Temperature [] 100 125 150
0 -50 -25 0 25 50 75 Temperature [] 100 125 150
M A X I U M O U T P U T V O LT A G E vs M LO A D R E S I T A N C E (T E M P E R A T U R E ) S 18 15
M axi um O ut m put V ol age V t
-40
V + /V -= ,G v= open,R L to 0V 16V
M A X I U M O U T P U T V O LT A G E vs M LO A D R E S I T A N C E (T E M P E R A T U R E ) S 16 12
M axi um O ut m put V ot age V
V + /V -= ,G v= open,R L to 0V 15V
12 9 6 3 0 -3 -6 -9 -12 -15 -18 10 100 1000 10000 100000
25 85
8 4 0 -4 -8 -12 -16 10
-40
85
25
100
1000
10000
100000
Load R esi ance ohm st
Load R esi ance ohm st
- 10 -
Ver.2009-12-18
MUSES01
M A X IM U M O U T P U T V O LT A G E vs LO A D R E S I T A N C E (T E M P E R A T U R E ) S 10 8
M axi um O ut m put V ol age V t
M axi um O ut m put V ol age V t
V + /V -= ,G v= open,R L to 0V 9V
M A X I U M O U T P U T V O LT A G E vs M T E M P E R A T U R E (S U P P LY V O LT A G E )
G v= open,R L = 2kohm to 0V
18 15
-40
6 4 2 0 -2 -4 -6
12 9 6 3 0 -3 -6 -9 -12 -15 -18
V +/ -= V 15V 9V 16V
85
25
-8 -10 10 100 1000 10000 100000
-50
-25
0
25
50
75
100
125
150
Load R esi ance ohm st
T em perature
G A IN B A N D W ID T H P R O D U C T vs T E M P E R A T U R E (S U P P LY V O LT A G E )
f=10kH z,A V =80dB , R S =10ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-50dB m
M A X IM U M O U T P U T V O LT A G E vs T E M P E R A T U R E (S U P P LY V O LT A G E )
G v= open,R L =10kohm to 0V
18 15
M axi um O ut m put V ol age V t
6
9 6 3 0 -3 -6 -9 -12 -15 -18 -50 -25 0 25 50 75 100 125 150
V +/ -= V 15V 16V 9V
G ai B andw i h P roduct [ H z] n dt M
12
5 4
V +/V -= 15V 16V
3 2 1 0 -50 -25 0 25 50 75 100 125 150
9V
T em perature
T em perature[]
U N IT Y G A IN F R E Q U E N C Y vs T E M P E R A T U R E (S U P P LY V O LT A G E )
A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =56pF ,V IN =-30dB m
P H A S E M A R G IN vs T E M P E R A T U R E (S U P P LY V O LT A G E )
A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-30dB m
6 5 4 3 2
9V
90
V+ /V-=15V 16V
U ni y G ai F requency [ H z] t n M
P hase M argi [ n deg]
V + /V -= 15V 16V
60
9V
30
1 0 -50 -25 0 25 50 75 100 125 150
0 -50 -25 0 25 50 75 100 125 150
T em perature[]
T em perature[]
Ver.2009-12-18
- 11 -
MUSES01
MEMO
[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
- 12 -
Ver.2009-12-18


▲Up To Search▲   

 
Price & Availability of MUSES01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X