![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
19-4827; Rev 0; 10/09 TION KIT EVALUA BLE AVAILA SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer General Description The MAX19998 single, high-linearity downconversion mixer provides 8.7dB of conversion gain, +24.3dBm input IP3, +11.3dBm 1dB input compression point, and a noise figure of 9.7dB for 2300MHz to 4000MHz WiMAXK, LTE, and MMDS receiver applications. With an ultra-wide LO 2600MHz to 4300MHz frequency range, the MAX19998 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for high-side injection, refer to the MAX19996A. In addition to offering excellent linearity and noise performance, the MAX19998 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19998 requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V or 150mA at VCC = 3.3V. The MAX19998 is pin compatible with the MAX19996/ MAX19996A 2000MHz to 3900MHz mixer family. The device is also pin similar with the MAX9984/MAX9986/ MAX9986A 400MHz to 1000MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX19998 is available in a compact, 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. Features S 2300MHz to 4000MHz RF Frequency Range S 2600MHz to 4300MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 8.7dB Conversion Gain S 9.7dB Noise Figure S +24.3dBm Typical Input IP3 S +11.3dBm Typical Input 1dB Compression Point S 67dBc Typical 2RF - 2LO Spurious Rejection at PRF = -10dBm S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX19996/MAX19996A 2000MHz to 3900MHz Mixers S Pin Similar with the MAX9984/MAX9986/ MAX9986A Series of 400MHz to 1000MHz Mixers and the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers S Single 5.0V or 3.3V Supply S External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode MAX19998 Applications 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems Ordering Information PART MAX19998ETP+ MAX19998ETP+T TEMP RANGE -40NC to +85NC -40NC to +85NC PIN-PACKAGE 20 Thin QFN-EP* 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. WiMAX is a trademark of WiMAX Forum. _______________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 ABSOLUTE MAXIMUM RATINGS VCC to GND..........................................................-0.3V to +5.5V IF+, IF-, LOBIAS, IFBIAS to GND ............. -0.3V to (VCC + 0.3V) RF, LO Input Power ....................................................... +12dBm RF, LO Current (RF and LO is DC shorted to GND through balun) ........50mA Continuous Power Dissipation (Note 1) .................................5W BJA (Notes 2, 3) ............................................................ +38NC/W BJC (Notes 1, 3) ............................................................ +13NC/W Operating Case Temperature Range (Note 4).................................................. TC = -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current CONDITIONS MIN 4.75 TYP 5.0 230 MAX 5.25 247 UNITS V mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, R1 = 845, R2 = 1.1k, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current CONDITIONS MIN 3.0 TYP 3.3 150 MAX 3.6 UNITS V mA RECOMMENDED AC OPERATING CONDITIONS PARAMETER RF Frequency Range LO Frequency SYMBOL fRF fLO (Notes 5, 6) (Notes 5, 6) Using a Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) Using a Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) CONDITIONS MIN 2300 2600 100 TYP MAX 4000 4300 500 MHz 50 -3 0 250 +3 dBm UNITS MHz MHz IF Frequency fIF LO Drive PLO 2 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC CONDITIONS TC = +25NC (Notes 8, 9) fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC (Note 9) fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC NFSSB TCNF No blockers present (Note 5) No blockers present, TC = +25NC (Note 5) Single sideband, no blockers present, TC = -40NC to +85NC +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25NC (Notes 5, 11) fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm (Note 5) PRF = -5dBm (Note 9) PRF = -10dBm (Note 5) PRF = -5dBm (Note 9) 63 58 80 70 10.0 22 MIN 7.6 TYP 8.7 0.15 dB 0.3 -0.01 11.4 24.3 Q0.2 9.7 9.7 0.018 12.5 11.0 dB/NC dBm dBm dBm dB dB/NC MAX 9.4 UNITS dB MAX19998 Gain Variation vs. Frequency DGC Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient Noise Figure Under Blocking TCCG IP1dB IIP3 NFB 21 67 62 85 75 25 16 200 20 20 25 dB 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance 2x2 3x3 RLRF RLLO ZIF dBc dBc dB dB I LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH IF Output Return Loss RLIF dB 20 _______________________________________________________________________________________ 3 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port SYMBOL CONDITIONS fRF = 3500MHz, PLO = +3dBm (Note 9) fLO = 2800MHz to 3600MHz, PLO = +3dBm (Note 9) PLO = +3dBm PLO = +3dBm (Note 9) MIN 27 TYP 29.5 -26 -29 -22 MAX UNITS dB dBm dBm dBm 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845, R2 = 1.1k, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance NFSSB TCNF 2x2 3x3 RLRF RLLO ZIF SYMBOL GC DGC TCCG IP1dB IIP3 fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.4 0.15 -0.01 7.7 20.1 Q0.2 9.3 0.018 64 59 74 64 30 20 200 MAX UNITS dB dB dB/NC dBm dBm dB dB dB/NC dBc dBc dB dB I LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs 4 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845, R2 = 1.1k, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS RF terminated into 50I, LO fIF = 450MHz, L1 = L2 = 120nH driven by 50I source, IF transformed to 50I using fIF = 350MHz, external components shown L1 = L2 = 270nH in the Typical Application Circuit. See the Typical fIF = 300MHz, Operating Characteristics for performance vs. inductor L1 = L2 = 390nH values. fRF = 3100MHz to 3900MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm MIN TYP 17 17 dB 17 MAX UNITS MAX19998 IF Output Return Loss RLIF RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 27 -30 -26.5 -27.5 dB dBm dBm dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC TC = +25NC fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC NFSSB TCNF 2x2 3x3 No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.4 0.15 dB 0.3 -0.01 11.4 24.8 Q0.2 9.8 0.018 70 65 89 79 dB/NC dBm dBm dBm dB dB/NC dBc dBc MAX UNITS dB Gain Variation vs. Frequency DGC Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2LO - 2RF Spur Rejection 3LO - 3RF Spur Rejection TCCG IP1dB IIP3 _______________________________________________________________________________________ 5 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL RLRF RLLO ZIF CONDITIONS LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. PLO = +3dBm PLO = +3dBm PLO = +3dBm PLO = +3dBm fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH MIN TYP 24 18 200 20 20 dB fIF = 300MHz, L1 = L2 = 390nH 20 MAX UNITS dB dB I IF Output Return Loss RLIF RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port 30 -30.3 -19 -23 dB dBm dBm dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC TC = +25NC fRF = 2300MHz to 2900MHz, any 100MHz band fRF = 2300MHz to 2900MHz, any 200MHz band fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC CONDITIONS MIN TYP 8.4 0.15 dB 0.3 -0.01 11.4 25.0 dB/NC dBm dBm MAX UNITS dB Gain Variation vs. Frequency DGC Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point TCCG IP1dB IIP3 6 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted. (Note 7) PARAMETER IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2LO - 2RF Spur Rejection 3LO - 3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance NFSSB TCNF 2x2 3x3 RLRF RLLO ZIF SYMBOL CONDITIONS fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO - 50MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm MIN TYP Q0.2 10.0 0.018 77 72 86 76 30 18 200 25 25 dB fIF = 300MHz, L1 = L2 = 390nH 25 MAX UNITS dBm dB dB/NC dBc dBc dB dB I MAX19998 LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. PLO = +3dBm PLO = +3dBm PLO = +3dBm PLO = +3dBm fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH IF Output Return Loss RLIF RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port Note 5: Note 6: 45 -28.8 -42.3 -26.3 dB dBm dBm dBm Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source. Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. _______________________________________________________________________________________ 7 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc01 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc02 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc03 11 10 CONVERSION GAIN (dB) 9 8 7 6 3000 3200 3400 3600 3800 11 10 CONVERSION GAIN (dB) 9 8 7 6 11 10 CONVERSION GAIN (dB) 9 8 7 6 TC = -40C TC = +25C PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V TC = +85C 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19998 toc04 INPUT IP3 vs. RF FREQUENCY MAX19998 toc05 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE VCC = 5.25V INPUT IP3 (dBm) 25 MAX19998 toc06 MAX19998 toc09 26 PRF = -5dBm/TONE TC = +25C 26 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) 24 INPUT IP3 (dBm) 25 TC = +85C 25 24 TC = -40C PLO = -3dBm, 0dBm, +3dBm 24 VCC = 5.0V VCC = 4.75V 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX19998 toc07 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = -5dBm MAX19998 toc08 2RF - 2LO RESPONSE vs. RF FREQUENCY 90 90 PRF = -5dBm 90 PRF = -5dBm 2RF - 2LO RESPONSE (dBc) 2RF - 2LO RESPONSE (dBc) 80 80 2RF - 2LO RESPONSE (dBc) 80 70 TC = +85C TC = +25C 70 PLO = +3dBm 70 60 60 60 PLO = 0dBm TC = -40C 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400 PLO = -3dBm 50 3600 3800 4000 3000 VCC = 4.75V, 5.0V, 5.25V 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 8 ______________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc10 MAX19998 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc11 3RF - 3LO RESPONSE vs. RF FREQUENCY PRF = -5dBm MAX19998 toc12 MAX19998 toc18 MAX19998 toc15 85 PRF = -5dBm 85 PRF = -5dBm 85 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) 75 75 3RF - 3LO RESPONSE (dBc) 75 TC = -40C, +25C, +85C 65 PLO = -3dBm, 0dBm, +3dBm 65 VCC = 4.75V, 5.0V, 5.25V 65 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19998 toc13 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc14 NOISE FIGURE vs. RF FREQUENCY 12 11 NOISE FIGURE (dB) 10 9 8 7 12 11 NOISE FIGURE (dB) 10 9 8 12 11 NOISE FIGURE (dB) 10 9 8 TC = +85C TC = +25C PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V TC = -40C 7 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY TC = +85C 12 INPUT P1dB (dBm) MAX19998 toc16 INPUT P1dB vs. RF FREQUENCY MAX19998 toc17 INPUT P1dB vs. RF FREQUENCY 13 13 13 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) VCC = 5.0V VCC = 5.25V 11 11 11 TC = -40C 10 TC = +25C PLO = -3dBm, 0dBm, +3dBm 10 VCC = 4.75V 10 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc19 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc21 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) TC = +85C -20 -20 LO LEAKAGE AT IF PORT (dBm) -20 -30 TC = +25C TC = -40C -30 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc22 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc23 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc24 50 50 50 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +85C 30 30 RF-TO-IF ISOLATION (dB) 40 40 40 30 20 TC = +25C TC = -40C 20 PLO = -3dBm, 0dBm, +3dBm 20 VCC = 4.75V, 5.0V, 5.25V 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc26 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc27 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 TC = -40C -25 -25 -30 TC = +85C TC = +25C -30 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -35 -35 -35 -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) 10 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc28 MAX19998 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc29 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc30 -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) -20 TC = +25C TC = -40C -20 -20 -30 TC = +85C -30 -30 -40 -40 -40 PLO = -3dBm, 0dBm, +3dBm -50 VCC = 4.75V, 5.0V, 5.25V -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 2500 3000 3500 4000 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19998 toc31 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3600MHz MAX19998 toc32 0 fIF = 300MHz 0 10 20 30 40 50 RF PORT RETURN LOSS (dB) 10 20 IF PORT RETURN LOSS (dB) VCC = 4.75V, 5.0V, 5.25V 30 PLO = -3dBm, 0dBm, +3dBm 40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 140 230 320 410 500 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX19998 toc33 SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19998 toc34 0 250 240 SUPPLY CURRENT (mA) 230 220 LO PORT RETURN LOSS (dB) VCC = 5.25V 10 PLO = -3dBm VCC = 5.0V 20 PLO = 0dBm VCC = 4.75V 210 200 PLO = +3dBm 30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz) -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 11 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc35 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc36 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc37 10 TC = -40NC CONVERSION GAIN (dB) 9 VCC = 3.3V 10 VCC = 3.3V CONVERSION GAIN (dB) 9 10 TC = +25NC 8 8 PLO = -3dBm, 0dBm, +3dBm 7 CONVERSION GAIN (dB) 9 8 VCC = 3.0V, 3.3V, 3.6V 7 7 TC = +85NC 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19998 toc38 INPUT IP3 vs. RF FREQUENCY MAX19998 toc39 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE MAX19998 toc40 22 VCC = 3.3V PRF = -5dBm/TONE TC = +85NC 22 VCC = 3.3V PRF = -5dBm/TONE 22 21 INPUT IP3 (dBm) 21 INPUT IP3 (dBm) 21 INPUT IP3 (dBm) VCC = 3.6V VCC = 3.3V 20 TC = +25NC TC = -40NC 19 20 PLO = -3dBm, 0dBm, +3dBm 19 20 VCC = 3.0V 19 18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX19998 toc41 2RF - 2LO RESPONSE vs. RF FREQUENCY MAX19998 toc42 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 2RF - 2LO RESPONSE (dBc) 80 70 60 50 40 VCC = 3.0V, 3.3V, 3.6V MAX19998 toc43 90 80 70 60 50 40 3000 3200 3400 3600 TC = -40NC TC = +25NC TC = +85NC VCC = 3.3V PRF = -5dBm 90 80 70 60 50 40 PLO = 0dBm VCC = 3.3V PRF = -5dBm 90 2RF - 2LO RESPONSE (dBc) 2RF - 2LO RESPONSE (dBc) PLO = +3dBm PLO = -3dBm 3800 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) 12 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc44 MAX19998 3RF - 3LO RESPONSE vs. RF FREQUENCY MAX19998 toc45 3RF - 3LO RESPONSE vs. RF FREQUENCY PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 70 VCC = 3.0V 65 60 55 50 VCC = 3.6V MAX19998 toc46 75 70 65 60 55 50 3000 3200 3400 3600 VCC = 3.3V PRF = -5dBm 75 70 65 60 55 50 VCC = 3.3V PRF = -5dBm 75 3RF - 3LO RESPONSE (dBc) TC = -40C, +25C, +85C 3RF - 3LO RESPONSE (dBc) PLO = -3dBm, 0dBm, +3dBm VCC = 3.3V 3800 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19998 toc47 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc48 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc49 12 VCC = 3.3V 11 NOISE FIGURE (dB) 10 9 8 7 3000 3200 3400 3600 3800 TC = +85NC 12 VCC = 3.3V 11 NOISE FIGURE (dB) 10 9 PLO = -3dBm, 0dBm, +3dBm 8 7 12 11 NOISE FIGURE (dB) 10 9 VCC = 3.0V, 3.3V, 3.6V 8 7 TC = +25NC TC = -40NC 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19998 toc50 INPUT P1dB vs. RF FREQUENCY MAX19998 toc51 INPUT P1dB vs. RF FREQUENCY MAX19998 toc52 9 TC = +85NC INPUT P1dB (dBm) 8 VCC = 3.3V 9 VCC = 3.3V 9 VCC = 3.6V INPUT P1dB (dBm) 8 INPUT P1dB (dBm) 8 7 TC = -40NC TC = +25NC PLO = -3dBm, 0dBm, +3dBm 7 VCC = 3.3V 7 VCC = 3.0V 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 13 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc53 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc54 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc55 -10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -20 -10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -20 -10 LO LEAKAGE AT IF PORT (dBm) -20 VCC = 3.6V -30 TC = -40C, +25C, +85C -40 -30 PLO = -3dBm, 0dBm, +3dBm -40 -30 VCC = 3.3V -40 VCC = 3.0V -50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) -50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc56 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc57 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc58 50 VCC = 3.3V RF-TO-IF ISOLATION (dB) 40 TC = +85NC 30 TC = +25NC TC = -40NC 50 VCC = 3.3V RF-TO-IF ISOLATION (dB) 40 50 30 PLO = -3dBm, 0dBm, +3dBm RF-TO-IF ISOLATION (dB) 40 30 VCC = 3.0V, 3.3V, 3.6V 20 20 20 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc59 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc60 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc61 -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 TC = -40C, +25C, +85C -30 -20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 PLO = -3dBm, 0dBm, +3dBm -30 -20 LO LEAKAGE AT RF PORT (dBm) -25 VCC = 3.6V -30 VCC = 3.3V -35 VCC = 3.0V -35 -35 -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) 14 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc62 MAX19998 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc63 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc64 -10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -40NC -30 TC = +25NC -10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 -10 2LO LEAKAGE AT RF PORT (dBm) -20 VCC = 3.0V -30 VCC = 3.3V VCC = 3.6V -30 -40 TC = +85NC -40 PLO = -3dBm, 0dBm, +3dBm -40 -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) -50 2500 3000 3500 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19998 toc65 VCC = 3.3V fIF = 300MHz RF PORT RETURN LOSS (dB) 10 PLO = -3dBm, 0dBm, +3dBm 20 fLO = 3600MHz IF PORT RETURN LOSS (dB) 10 20 30 40 VCC = 3.0V, 3.3V, 3.6V 30 40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 50 140 230 320 410 500 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX19998 toc67 VCC = 3.3V LO PORT RETURN LOSS (dB) VCC = 3.6V SUPPLY CURRENT (mA) 150 10 PLO = -3dBm PLO = 0dBm 20 PLO = +3dBm 30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz) VCC = 3.3V 140 VCC = 3.0V 130 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ MAX19998 toc68 0 SUPPLY CURRENT vs. TEMPERATURE (TC) 160 MAX19998 toc66 0 IF PORT RETURN LOSS vs. IF FREQUENCY 0 15 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc69 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc70 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc71 11 10 CONVERSION GAIN (dB) 9 8 7 6 3000 3200 3400 3600 3800 11 10 CONVERSION GAIN (dB) 9 8 11 10 CONVERSION GAIN (dB) 9 8 TC = -40C TC = +25C PLO = -3dBm, 0dBm, +3dBm 7 6 VCC = 4.75V, 5.0V, 5.25V 7 6 TC = +85C 4000 3000 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19998 toc72 INPUT IP3 vs. RF FREQUENCY MAX19998 toc73 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE VCC = 5.25V INPUT IP3 (dBm) 25 MAX19998 toc74 MAX19998 toc77 26 PRF = -5dBm/TONE TC = +85C TC = +25C 26 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) INPUT IP3 (dBm) 25 25 24 TC = -40C 24 PLO = -3dBm, 0dBm, +3dBm VCC = 5.0V 24 VCC = 4.75V 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX19998 toc75 2LO - 2RF RESPONSE vs. RF FREQUENCY PRF = -5dBm MAX19998 toc76 2LO - 2RF RESPONSE vs. RF FREQUENCY 90 90 PRF = -5dBm 90 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) 80 80 2LO - 2RF RESPONSE (dBc) 80 TC = +85C 70 PLO = +3dBm 70 70 TC = +25C 60 60 PLO = -3dBm PLO = 0dBm 60 TC = -40C 50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 VCC = 4.75V, 5.0V, 5.25V 50 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 16 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc78 MAX19998 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc79 3LO - 3RF RESPONSE vs. RF FREQUENCY PRF = -5dBm MAX19998 toc80 95 PRF = -5dBm TC = +85C 95 PRF = -5dBm 95 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 85 85 3LO - 3RF RESPONSE (dBc) 85 75 TC = +25C TC = -40C 75 75 PLO = -3dBm, 0dBm, +3dBm 65 VCC = 4.75V, 5.0V, 5.25V 65 65 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19998 toc81 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc82 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc83 12 11 NOISE FIGURE (dB) 10 9 8 12 11 NOISE FIGURE (dB) 10 9 12 11 NOISE FIGURE (dB) 10 9 TC = +85C TC = +25C PLO = -3dBm, 0dBm, +3dBm 8 VCC = 4.75V, 5.0V, 5.25V 8 7 TC = -40C 7 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 7 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19998 toc84 INPUT P1dB vs. RF FREQUENCY MAX19998 toc85 INPUT P1dB vs. RF FREQUENCY VCC = 5.25V MAX19998 toc86 13 13 13 TC = +85C 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) VCC = 5.0V 11 11 11 TC = +25C 10 PLO = -3dBm, 0dBm, +3dBm 10 VCC = 4.75V 10 TC = -40C 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 17 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc87 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc88 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc89 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = +25C -20 LO LEAKAGE AT IF PORT (dBm) TC = -40C -20 TC = +85C -30 -30 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) -40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) -40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc90 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc91 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc92 50 50 50 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) TC = +85C 30 30 RF-TO-IF ISOLATION (dB) 40 40 40 30 20 TC = +25C TC = -40C 20 PLO = -3dBm, 0dBm, +3dBm 20 VCC = 4.75V, 5.0V, 5.25V 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc93 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc94 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc95 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 TC = +85C -25 -25 -30 -30 -30 TC = +25C -35 TC = -40C -35 PLO = -3dBm, 0dBm, +3dBm -35 VCC = 4.75V, 5.0V, 5.25V -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) 18 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc96 MAX19998 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc97 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc98 -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -40C TC = +85C TC = +25C PLO = +3dBm -20 -20 PLO = -3dBm -30 VCC = 4.75V, 5.0V, 5.25V -30 -30 PLO = 0dBm -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) -40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY fIF = 300MHz MAX19998 toc99 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 4100MHz IF PORT RETURN LOSS (dB) 10 20 30 40 50 MAX19998 toc100 0 0 RF PORT RETURN LOSS (dB) 10 20 VCC = 4.75V, 5.0V, 5.25V 30 PLO = -3dBm, 0dBm, +3dBm 40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 140 230 320 410 500 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX19998 toc101 SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19998 toc102 0 250 240 SUPPLY CURRENT (mA) 230 220 LO PORT RETURN LOSS (dB) VCC = 5.25V 10 PLO = -3dBm VCC = 5.0V 20 PLO = 0dBm VCC = 4.75V 210 200 PLO = +3dBm 30 2700 3100 3500 3900 4300 LO FREQUENCY (MHz) -40 -15 10 35 60 65 TEMPERATURE (C) ______________________________________________________________________________________ 19 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc103 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc104 CONVERSION GAIN vs. RF FREQUENCY MAX19998 toc105 11 10 CONVERSION GAIN (dB) 9 8 7 6 2300 2450 2600 2750 TC = -40C TC = +25C 11 10 CONVERSION GAIN (dB) 9 8 PLO = -3dBm, 0dBm, +3dBm 7 6 11 10 CONVERSION GAIN (dB) 9 8 VCC = 4.75V, 5.0V, 5.25V 7 6 TC = +85C 2900 2300 2450 2600 2750 2900 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX19998 toc106 INPUT IP3 vs. RF FREQUENCY MAX19998 toc107 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 26 INPUT IP3 (dBm) VCC = 5.25V 25 VCC = 5.0V VCC = 4.75V MAX19998 toc108 27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) TC = +85C 27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) 27 TC = +25C 25 25 PLO = -3dBm, 0dBm, +3dBm 24 TC = -40C 24 24 23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX19998 toc109 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX19998 toc110 2LO - 2RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 80 VCC = 4.75V MAX19998 toc111 90 TC = +85NC 2LO - 2RF RESPONSE (dBc) 80 PRF = -5dBm 90 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 80 PLO = +3dBm 90 70 TC = -40NC 70 PLO = -3dBm PLO = 0dBm 60 70 VCC = 5.25V VCC = 5.0V 60 60 TC = +25NC 50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 20 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc112 MAX19998 3LO - 3RF RESPONSE vs. RF FREQUENCY MAX19998 toc113 3LO - 3RF RESPONSE vs. RF FREQUENCY PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85 MAX19998 toc114 95 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85 TC = +85NC 95 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85 95 75 TC = -40NC 65 TC = +25NC 75 PLO = -3dBm, 0dBm, +3dBm 65 75 VCC = 4.75V, 5.0V, 5.25V 65 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY MAX19998 toc115 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc116 NOISE FIGURE vs. RF FREQUENCY MAX19998 toc117 13 12 NOISE FIGURE (dB) 11 10 TC = -40NC 9 8 2300 2450 2600 2750 TC = +85NC 13 12 NOISE FIGURE (dB) 11 10 9 8 13 12 NOISE FIGURE (dB) VCC = 4.75V 11 10 9 8 VCC = 5.25V VCC = 5.0V TC = +25NC PLO = -3dBm, 0dBm, +3dBm 2900 2300 2450 2600 2750 2900 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX19998 toc118 INPUT P1dB vs. RF FREQUENCY MAX19998 toc119 INPUT P1dB vs. RF FREQUENCY VCC = 5.25V MAX19998 toc120 13 TC = +85NC 13 13 VCC = 5.0V 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) 12 INPUT P1dB (dBm) 11 TC = -40NC 10 TC = +25NC 11 PLO = -3dBm, 0dBm, +3dBm 10 11 VCC = 4.75V 10 9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 21 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc121 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc122 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19998 toc123 -10 -10 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 TC = +85C TC = +25C -20 LO LEAKAGE AT IF PORT (dBm) -20 -30 TC = -40C -30 PLO = -3dBm, 0dBm, +3dBm -30 VCC = 4.75V, 5.0V, 5.25V -40 2600 2750 2900 3050 3200 RF FREQUENCY (MHz) -40 2600 2750 2900 3050 3200 RF FREQUENCY (MHz) -40 2600 2750 2900 3050 3200 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc124 RF-TO-IF ISOLATION vs. RF FREQUENCY MAX19998 toc125 RF-TO-IF ISOLATION vs. RF FREQUENCY VCC = 5.25V RF-TO-IF ISOLATION (dB) 50 VCC = 5.0V MAX19998 toc126 60 60 60 RF-TO-IF ISOLATION (dB) 50 RF-TO-IF ISOLATION (dB) TC = +85NC 50 40 TC = +25NC TC = -40NC 40 PLO = -3dBm, 0dBm, +3dBm 40 VCC = 4.75V 30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc127 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc128 LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc129 -20 LO LEAKAGE AT RF PORT (dBm) TC = -40NC -25 -20 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) -25 -25 -30 TC = +25NC -35 TC = +85NC -30 PLO = -3dBm, 0dBm, +3dBm -35 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) -40 2500 3000 3500 4000 LO FREQUENCY (MHz) 22 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc130 MAX19998 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc131 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19998 toc132 -20 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT (dBm) -30 TC = -40NC -30 PLO = +3dBm -30 VCC = 4.75V VCC = 5.0V -40 TC = +25NC -50 TC = +85NC -40 PLO = 0dBm -50 PLO = -3dBm -40 VCC = 5.25V -50 -60 2500 3000 3500 4000 LO FREQUENCY (MHz) -60 2500 3000 3500 4000 LO FREQUENCY (MHz) -60 2500 3000 3500 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY MAX19998 toc133 IF PORT RETURN LOSS vs. IF FREQUENCY fLO = 3000MHz IF PORT RETURN LOSS (dB) 10 VCC = 4.75V, 5.0V, 5.25V 20 30 40 50 MAX19998 toc134 0 fIF = 300MHz RF PORT RETURN LOSS (dB) 10 0 20 30 PLO = -3dBm, 0dBm, +3dBm 40 2300 2450 2600 2750 2900 RF FREQUENCY (MHz) 50 140 230 320 410 500 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY MAX19998 toc135 SUPPLY CURRENT vs. TEMPERATURE (TC) MAX19998 toc136 0 250 240 SUPPLY CURRENT (mA) LO PORT RETURN LOSS (dB) VCC = 5.25V 10 PLO = -3dBm VCC = 5.0V 230 220 VCC = 4.75V 20 PLO = 0dBm PLO = +3dBm 210 200 30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz) -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 23 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Pin Configuration/Functional Diagram IFBIAS TOP VIEW 20 VCC 1 19 18 17 LEXT 16 15 GND RF 2 MAX19998 GND IF+ IF- 14 VCC GND 3 13 GND GND 4 EP 12 GND GND 5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND 11 LO Pin Description PIN 1, 6, 8, 14 2 3, 9, 13, 15 4, 5, 10, 12, 17 7 11 16 18, 19 20 -- NAME VCC RF GND GND LOBIAS LO LEXT IF-, IF+ IFBIAS EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required. Ground. Not internally connected. Pins can be grounded. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I (5V, 230mA bias condition) from LOBIAS to ground. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component count at the expense of reduced RF-to-IF and LO-to-IF isolation. Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I (5V, 230mA bias condition) from IFBIAS to GND. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. 24 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer Detailed Description The MAX19998 provides high linearity and low noise figure for a multitude of 2300MHz to 4000MHz WiMAX, LTE, and MMDS base-station applications. This device operates over a 2600MHz to 4300MHz LO range and a 50MHz to 500MHz IF range. Integrated baluns and matching circuitry allow 50I single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19998's input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. The MAX19998 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17dB over the RF frequency range of 3200MHz to 3900MHz. See Table 1 for lower band tuning. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. The core of the MAX19998 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifier, IIP3, 2RF - 2LO rejection, and noise-figure performance are typically +24.3dBm, 67dBc, and 9.7dB, respectively, for low-side LO injection architectures covering the 3000MHz to 4000MHz RF band. The MAX19998 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX19998 mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher L1 and L2 inductor values to maintain a good IF match. The differential, open-collector IF output ports require that these inductors be connected to VCC. Note that these differential ports are ideal for providing enhanced 2RF - 2LO performance. Single-ended IF applications require a 4:1 (impedance ratio) balun to transform the 200I differential IF impedance to a 50I single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/ IF- ports to keep external DC from entering the IF ports of the mixer. MAX19998 RF Input and Balun Applications Information The RF and LO inputs provide 50I matches when combined with the proper tuning. Use an 8.2pF capacitor value on the RF port for frequencies ranging from 3000MHz to 4000MHz. Use a 3.3nH series inductor and a 0.3pF shunt capacitor on the RF port for frequencies ranging from 2300MHz to 2900MHz. On the LO port, use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The IF output impedance is 200I (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). The MAX19998 has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. See Table 1 for nominal values for these resistors. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by 57% (typ). See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs. Input and Output Matching LO Inputs, Buffer, and Balun High-Linearity Mixer Reduced-Power Mode Differential IF Output Amplifier ______________________________________________________________________________________ 25 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Short LEXT to ground using a 0I resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120mA flows through LEXT, it is important to use a low-DCR wire-wound inductor. LEXT Inductor A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground Layout Considerations does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19998 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1 for component values. Power-Supply Bypassing Table 1. Component Values DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 3000MHz to 4000MHz. 3.3nH microwave inductor (0402). Use for RF Coilcraft, Inc. frequencies ranging from 2300MHz to 2900MHz. 0.01FF microwave capacitors (0402) Not installed, capacitors 2pF microwave capacitor (0402) 1000pF microwave capacitors (0402) 82pF microwave capacitor (0402) Not installed for RF frequencies ranging from 3000MHz to 4000MHz Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- C1 1 C2, C6, C8, C11 C3, C9 C10 C13, C14 C15 4 0 1 2 1 C16 1 0.3pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 2300MHz to 2900MHz. 390nH wire-wound high-Q inductors* (0805) 4.7nH wire-wound high-Q inductor (0603) 698I Q1% resistor (0402). Use for VCC = 5.0V applications. 845I Q1% resistor (0402). Use for VCC = 3.3V applications. 604I Q1% resistor (0402). Use for VCC = 5.0V applications. 1.1kI Q1% resistor (0402). Use for VCC = 3.3V applications. 0I resistor (1206) 4:1 IF balun TC4-1W-17* MAX19998 IC (20 Thin QFN-EP) Coilcraft, Inc. Coilcraft, Inc. L1, L2 L3 2 1 R1 1 Digi-Key Corp. R2 1 Digi-Key Corp. R3 T1 U1 1 1 1 Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc. *Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz. 26 _____________________________________________________________________________________ SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer The exposed pad QFN-EP package path to the die. It the MAX19998 is Exposed Pad RF/Thermal Considerations (EP) of the MAX19998's 20-pin thin provides a low thermal-resistance is important that the PCB on which mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. MAX19998 Typical Application Circuit C15 L1 C13 R3 C14 R1 L2 2 1 4:1 4 T1 3 6 IF OUTPUT L3 IFBIAS IF+ IF+5.0V LEXT 16 15 GND GND 17 20 C3 C2 VCC 1 19 18 U1 MAX19998 RF INPUT C1 C16* RF 2 14 VCC C11 +5.0V GND 3 13 GND GND 4 EP 12 GND C10 LO INPUT GND 5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND 11 LO +5.0V C6 R2 NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. *C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS. +5.0V C8 C9 ______________________________________________________________________________________ 27 SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998 Chip Information PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE 20 Thin QFN-EP PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 28 (c) Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. |
Price & Availability of MAX19998ETP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |