Part Number Hot Search : 
DPAN02 UC338012 BTB24 LA4250 KAT54S M1400 HAT2116H LB122
Product Description
Full Text Search
 

To Download IX6Q11 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IX6Q11
1 MHz, 300 Volt, 6 Ampere High & Low-side Driver for N-Channel MOSFETs and IGBTs
Features
* Floating High Side Driver with boot-strap Power supply along with a Low Side Driver. * Fully operational to 300V* * 50V/ns dV/dt immunity * Gate drive power supply range: 10 - 35V * Undervoltage lockout for both output drivers * Separate Logic power supply range: 3.3V to VCL * Built using the advantages and compatibility of CMOS and IXYS HDMOSTM processes * Latch-Up protected over entire operating range * High peak output current: 6A * Matched propagation delay for both outputs * Low output impedance * Low power supply current * Immune to negative voltage transients
General Description
The IX6Q11 Bridge Driver for N-channel MOSFETs and IGBTs with a high side and low side output, whose input signals reference the low side. The High Side driver can control a MOSFET or IGBT connected to a positive bus voltage up to 300V in dynamic conditions. The logic input stages are compatible with TTL or CMOS, have built-in hysteresis and are fully immune to latch up over the entire operating range. The IX6Q11 can withstand dV/dt on the output side up to 50V/ns.
Ordering Information
The IX6Q11 is available in the 14-Pin DIP, the 16-Pin SOIC, and the heat-sinkable 18-Pin SOIC CooltabTM packages.
Part Number Package Type
Applications
* * * * * * Driving MOSFETs and IGBTs in half-bridge circuits High voltage, high side and low side drivers Motor Controls Switch Mode Power Supplies (SMPS) DC to DC Converters Class D Switching Amplifiers
IX6Q11P7 IX6Q11S3 IX6Q11S6
14-Pin DIP 16-Pin SOIC 18-Pin SOIC
Warning: The IX6Q11 is ESD Sensitive
Precaution: when performing the High-Voltage tests, adequate safety precautions should be taken!
* Operational voltage rating of 300V determined in a typical half-bridge circuit configuration (refer to Figure 9). Operational voltage in other circuit configurations may vary
Figure 1. Typical Circuit Connection
Up to 300V
www..com
(c) 2007 IXYS CORPORATION, All rights reserved
IX6R11S6 IX6Q11S3
DS99910(10/07)
IX6Q11
Figure 2 - IX6Q11 Functional Block Diagram
VDD VCH VCH
HIN 800K DG
Low to HIN HIN
High OUT RST IN UVCC Detect HS Isolated High Side VCL
Gate Current Output
HGO
HS
VDD
VCL
LIN 800K
Low to High Side Delay Equalizer and Shutdown Shutdown Logic
Gate Current Output
LGO
ENB 800K DG DG
UVCC Detect LS 1 Ohm LS
SYMBOL VDD HIN LIN ENB DG VCH HGO HS VCL LGO LS
FUNCTION Logic Supply HS Input LS Input Enable Ground Supply Voltage Output Return Supply Voltage Output Ground
Pin Description and Configuration DESCRIPTION Positive power supply for chip CMOS functions High side input signal, TTL or CMOS compatible; HGO in phase Low side input signal, TTL or CMOS compatible; LGO in phase Chip enable, active low. When driven high, both outputs go low Logic reference ground High side power supply, referenced to HS High side driver output High side voltage return pin Low side power supply, referenced to LS Low side driver output Low side voltage return pin
16-PIN SOIC 18-PIN SOIC w/CooltabTM
14-PIN DIP
8
N/C VDD HIN
HGO VCH
7
9
6
IX6Q11P7
IX6Q11S3
10
HS N/C VCL LS LGO
5
www..com 11 ENB
12
4
LIN DG NC
3
13
2
14
1
Cooltab is a trademark of IXYS Corporation IXYS reserves the right to change limits, test conditions, and dimensions.
IX6Q11S6
IX6Q11
Absolute Maximum Ratings Symbol Definition VCH VHS VHGO VCL VLGO VDD VDG VIN dVS/dt PD PD RTHJA RTHJc TJ TS TL High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage(HIN & LIN) Allowable offset supply voltage transient Package power dissipation @ TA 25C (IX6Q11S3/P7) (IX6Q11S6) Package power dissipation @ TC 25C (IX6Q11S3/P7) (IX6Q11S6) Thermal resistance, junction-to-ambient (IX6Q11S3/P7) (IX6Q11S6) Thermal resistance, junction-to-case Junction Temperature Storage temperature Lead temperature (soldering, 10 s) -55 (IX6Q11S3/P7) (IX6Q11S6) Min -0.3 -200 VHS-0.3 -0.3 -0.3 -0.3 VLS-3.8 VLS-0.3 Max +35 +300 VCH+0.3 35 VCL+0.3 VCL+0.3 VLS+3.8 VCL+0.3 50 1.25 1.4 2.5 43 100 90 50 3 150 150 300 Units V V V V V V V V V/ns W W W W K/W K/W K/W K/W
o o o
C C C
Recommended Operating Conditions Symbol Definition VCH VHS VHGO VCL VDD VDG VIN TA High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage(HIN, LIN, ENbar) Ambient Temperature
Min VHS+10 -20 VHS 10 0 VDG+3 VLS-0.5 VDG -40
Max VHS+20 +300 VCH+20 20 VCC VDG+VCL VLS+0.5 VDD 125
Units V V V V V V V V
o
VLGO Low www..com
C
(c) 2007 IXYS CORPORATION, All rights reserved
IX6Q11
Dynamic Electrical Characteristics*
VCL = VCH = VDD = +15V, Cload = 5nF, and VDG = VLS unless otherwise specified. The dynamic electrical characteristics are measured using Figure 7.
Symbol ton toff tenb tr tf tdm
Definition Turn-on propagation delay Turn-off propagation delay Device not enable delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off
Test Conditions VHS= 0V VHS= 300V
Min Typ Max Units 110 130 94 125 ns ns ns ns ns ns
110 140 25 17 10 35 25 30
Static Electrical Characteristics Symbol Definition Test Conditions VINH Logic "1" input voltage, HIN, LIN, ENB VDD= VCL= 15V VINL Logic "0" input voltage, HIN, LIN, ENB VDD= VCL= 15V IO= 0A IO= 0A VHS= VCH= 300V VIN= 0V or VDD = 15V VIN= 0V or VDD = 15V VIN= 0V or VDD = 15V VIN= VDD VIN= 0V VHLGO // VHHGO High level output voltage, VCH-VHGO or VCL-VLGO VLLGO // VLHGO Low level output voltage, VHGO or VLGO IHL IQHS IQLS IQDD IIN+ IINVCHUV+ VCHUVV + HS to LS bias current. Quiescent VCH supply current Quiescent VCL supply current Quiescent VDD supply current Logic "1" input bias current Logic "0" input voltage
Min Typ Max Units 9.5 V 0 6 0.1 0.1 170 1 1 15 20 3 3 30 40 1 7.5 8.6 7 7.4 8.2 8.5 9.7 9.4 9.6 9.4 V V V A mA mA A A A V V V V A -5 A
VCH supply undervoltage positive going threshold. VCH supply undervoltage negative going threshold. V supply undervoltage positive going threshold
CLUV CL www..com
VCLUVIGO+ IGO-
VCL supply undervoltage negative going threshold. HS or LS Output high short circuit current; V HS or LS Output low short circuit current; V
GO
7 8.2 4 6 -7
= 15V, VIN= 15V, PW<10us
GO
= 0V, VIN=0V, PW<10us
* These characteristics are guaranteed by design only. Tested on a sample basis. IXYS reserves the right to change limits, test conditions, and dimensions.
IX6Q11
ENB
50%
HIN/LIN ENB LGO/HGO
Figure 3. INPUT/OUPUT Timing Diagram
LGO/HGO
tenb
10%
Figure 4. ENABLE Waveform Definitions
50% HIN/LIN tdon tr
50%
50% HIN LIN
50%
Input Signal
tdoff 90% 10% 90% 10%
tdm
tf
LGO HGO 10%
90% tdm LGO HGO
HGO/LGO
Outgoing Signal
Figure 5. Definitions of Switching Time Waveforms Figure 6. Definitions of Delay Matching Waveforms
VCL=15V VCH + VHS 10 uF (0 to 300V)
10 uF
0.1 uF
9 10 11 12 13 2
3
6 5 7
0.1
uF
10 uF HGO
CL
HIN ENB LIN www..com
IX6Q11
1 CL LGO
Figure 7. Switching Time Test Circuit
(c) 2007 IXYS CORPORATION, All rights reserved
IX6Q11
U1
+ C2 10uF
IX6Q11
HS VDD HIN ENB LIN DG LS
U2 1 V1 BATTERY 18V Vin 15V Vout 3
VCH HGO HS LS VCL LGO LS
C5 0.1uF HGO HS OUTPUT MONITOR HV SCOPE PROBE
GND2 L1 200uH C6 0.1uF + C3 10uF
GND2
DSEI 12-10A
D1 + C1 100uF/250V
78L15
2
GND
GND1
dVs/dt > 50V/ns
HV 300V
GND1
15V V3 C8 PULSE BNC 2 3 GND2 0.1uF U3 VCC 16 OUT 15 10K GND3 2 U2 1,8 6,7
IXDD414
C9 10uF Q1 D2 DSEI12-10A IXFP4N100Q GND3
Measure dV/dt (HV Scope Probe)
HCPL-314J 1/2
14 VEE
4,5 -600V
Figure 8. Test circuit for allowable offset supply voltage transient.
VCH
10uF/35V
1
VIN+
NDY1215C
Up to 300V
3 1 IXCP 10M90S 2
10 11 12
1uF/35V MLCC
VOUTVOUT+ GND
VOUT- 15 14 VOUT+
1k
30
5.1 10 1uF/35V MLCC 11 12 10uF/35V 1k 1k 1k
1N5817 15 IXTH14N60P
VDD HIN ENB LIN
13 14 15 16 17 18
HS NC NC VDD HIN ENB LIN DG LS
VCH HGO HS NC NC LS VCL LGO LS
9 8 7 6 5 4 3 2 1
20/5W 20/5W
IX6Q11S6
18uH 5.1 15
0.1uF/1kV
1N5817 0.47uF IXTH14N60P 0.47uF
www..com
VCL 10uF/35V 1uF/35V MLCC
Figure 9. Test circuit for high frequency, 750kHz, operation. VDD, VCH, VCL = 15V
IXYS reserves the right to change limits, test conditions, and dimensions.
IX6Q11
120 Low side
100 90 High side
Time - nanoseconds
Time - nanoseconds
100
80 70 60 50 40 30 20 10 Low side
80 High side 60
40
20
0 -100
-50
0
50
100
150
0 -100
-50
0
50
100
150
Temperature - Degrees C Fig. 10a. High and Low side turn-on delay times
160 140
Temperature - Degrees C Fig. 10b. High and Low side turn-off delay times
100 90
Time - Nanoseconds
120 100 80 60 40 20 0 0 5
Time - nanoseconds
Low Side
80 70 60 50
High Side
High Side
Low Side
40 30 20 10 0
10
15
20
25
30
35
40
0
5
10
15
20
25
30
35
40
VCL, VCH Supply Voltage - Volts
VCL, VCH Supply Voltage
Fig. 11a. High and Low side turn-on delay vs. VCL, VCH
180 160
Fig. 11b. High and Low side turn-off delay vs. VCL, VCH
140 120
Time - nanoseconds
Time - nanoseconds
140 120 Low side 100 80 60 40 20 0 0 5 10 15 20 25 High side
100 80 High side 60 Low side 40 20 0 0 5 10 15 20 25
www..com
VDD Supply Voltage - Volts
VDD Supply Voltage - Volts
Fig. 12a. High and Low side turn-on delay vs VDD
(c) 2007 IXYS CORPORATION, All rights reserved
Fig. 12b. High and Low side turn-off delay vs. VDD
IX6Q11
Fig. 13a. High and Low side ENABLE (Shutdown) times vs. temperature.
Fig.13b. High and Low side ENABLE (Shutdown) times vs. supply voltage.
Fig. 13c. High and Low side ENABLE (Shutdown) times versus supply voltage.
Fig. 14a. Turn-on and turn-off rise times vs. temperature.
www..com
Fig. 14b. Turn-on rise times vs. bias supply voltages
IXYS reserves the right to change limits, test conditions, and dimensions.
Fig. 14c. Turn-off delay times vs. bias supply voltages.
IX6Q11
Offset Supply Leakage Current -
12
300 275
Maximum
Logic Input Threshold - Volts
10 8
Max Logic '1'
250 225 200
Typical
6 4
Min Logic '0'
2 0
175 150 -50
0
4
8
12
16
20
-25
0
25
50
75
100
125
VDD Logic Supply Voltage - Volts
Temperature - Degrees C
Fig. 15. Logic input threshold voltage vs bias supply voltage.
60
Fig. 16. Offset supply leakage current vs. temperature.
50
Load: IXTU01N100
Logic Input Bias Current -
50
Case Temperature - C
o
45
V = 300V
40
Maximum
40
V = 140V
30 20
Typical
35 30
10 0 0 2 4 6 8 10 12 14 16 18 20
25 100 200 300 400 500 600 700 800 900 1000
VDD Logic Supply Voltage (V)
Fig. 17. Logic input current vs. bias voltage.
10
Frequency - kHz Fig. 18. IX6Q11S3 Case temperature rise vs. operating frequency
18
Output Source Current (A)
Output Source Current (A)
9 8 7 6
Maximum
16 14
Maximum
12 10 8 6 4 2 0 10 15 20 25 30 35
Typical
5 www..com 4 3 2
Typical
-50
-25
0
25
50
75
100
125
Temperature - Degrees C
VBIAS Supply Voltage (V)
Fig. 19a. Output source current vs. temperature
(c) 2007 IXYS CORPORATION, All rights reserved
Fig. 19b. Output source current vs supply voltage
IX6Q11
- 12 - 20
Output Current - Amperes
Output Current - Amperes
- 11 - 10 -9 -8 -7 -6 -5 -4 -3 -2 -50
-25 0 25 50 75 100 125
Minimum Typical
- 18 - 16 - 14 - 12 - 10 -8 -6 -4 -2
0 10 15 20 25 30 35
Minimum Typical
Temperature - oC
Bias Voltage - Volts
Fig. 20a. Output sink current vs. temperature
15 14 13 12 11 10 9 8 7 6 5 -50 -25 0 25 50 75 100 125
Min Max Typ
Fig. 20b. Output sink current vs. bias voltage
16 15 14 13 12 Max 11 10 Typ 9 8 7 Min 6 5 4 -50 -25
Undervoltage Lockout (+) - Volts
Undervoltage Lockout (-) - Volts
0
25
50
75
100
125
Temperature - oC
Temperature - oC
Fig. 21a. VCH Undervoltage positive trip vs. temperature.
Undervoltage Lockout (+) - Volts
15 14 13 12 11 10 9 7 6 5
Typ Max
Fig. 21b. VCH Undervoltage negative trip vs. temperature
Undervoltage Lockout (-) - Volts
15 14 13 12 11 10 9 8 7 6 5 -50 -25 0 25 50 75 100 125
Min Typ Max
8 www..com
Min
-50
-25
0
25
50
o
75
100
125
Temperature - C
Temperature - oC
Fig. 22a. VCL Undervoltage positive trip vs. temperature
IXYS reserves the right to change limits, test conditions, and dimensions.
Fig. 22b. VCL Undervoltage negative trip vs. temperature
IX6Q11
1100
Maximum
1100 1000
VCH Current - A
1000
VCH Current - A
Maximum
900 800
Typical
900 800 700 600 10
Typical
700 600
-50 -25 0 25 50 75 100 125
15
20
25
30
35
Temperature - oC
VCH Voltage - Volts
Fig. 23a. Quiescent current vs. temperature for the high side power supply.
1000
Fig. 23b. Quiescent current vs. voltage for the high side power supply.
75 950
Case Temperature - C
Maximum
Load Conditions:
A: IXFK21N100F @ VCH= 300V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=300V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 300V F: IXTU01N100 @ VCH= 200V
70 65 60 55 50 45 40 35 30 25
o
900
VCL Current - A
B
850 800
Typical
A C
D
750 700 650 600
-50 -25 0 25 50 75 100 125
E
F
100 200 300 400 500 600 700 800 900
Temperature - oC
Frequency - kHz
Fig. 24. Quiescent current vs. temperature for the low side power supply
75 70
A B C D
Load Conditions:
A: IXFK21N100F @ VCH= 300V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=300V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 300V F: IXTU01N100 @ VCH= 200V
Fig. 25. Case temperature rise vs. switching frequency for IX6Q11S6
Case Temperature - oC
65 60 55 50 45
40 www..com 35 30
E
F
25 100 200 300 400 500 600 700 800 900 1000
Frequency - kHz
Fig. 26. Case temperature rise vs. switching frequency for IX6Q11S3
(c) 2007 IXYS CORPORATION, All rights reserved
IX6Q11
A2 b b2 c D D1 E E1 e eA eB L
E
H B C D E e H h L M N h x 45%%d
D
A
e
B
A1
N
L
c
M
E
H
D A
e h
www..com
e
B D1
A1 h x 45
E1
L
c
IXYS reserves the right to change limits, test conditions, and dimensions.


▲Up To Search▲   

 
Price & Availability of IX6Q11

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X