![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
Data Sheet No. PD60045-N IR2103(S) HALF-BRIDGE DRIVER Features * Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V and 15V logic compatible Cross-conduction prevention logic Matched propagation delay for both channels Internal set deadtime High side output in phase with HIN input Low side output out of phase with LIN input Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 130 mA / 270 mA 10 - 20V 680 & 150 ns 520 ns * * * * * * * * Packages Description The IR2103(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC 8-Lead SOIC IR2103S and latch immune CMOS technologies enable rug8-Lead PDIP gedized monolithic construction. The logic input is IR2103 compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2103(S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN) Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 Lead SOIC) (8 Lead PDIP) (8 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 -- -- -- -- -- -- -55 -- Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN) Ambient temperature Min. VS + 10 Note 1 VS 10 0 0 -40 Max. VS + 20 600 VB 20 VCC VCC 125 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2103(S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25C unless otherwise specified. Symbol ton toff tr tf DT MT Definition Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off Min. Typ. Max. Units Test Conditions -- -- -- -- 400 -- 680 150 100 50 520 -- 820 220 170 90 650 60 ns VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO- Definition Logic "1" (HIN) & Logic "0" ( LIN ) input voltage Logic "0" (HIN) & Logic "1" ( LIN ) input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 3 -- -- -- -- -- -- -- -- 8 7.4 130 270 -- -- -- -- -- 30 150 3 -- 8.9 8.2 210 360 -- 0.8 100 100 50 55 270 10 1 9.8 9 -- mA -- V A V mV VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V HIN = 5V, LIN = 0V HIN = 0V, LIN = 5V VO = 0V, VIN = VIH PW 10 s VO = 15V, VIN = VIL PW 10 s www.irf.com 3 IR2103(S) Functional Block Diagram VB HV LEVEL SHIFT PULSE FILTER Q R S VS HO IHN PULSE GEN DEAD TIME & SHOOT-THROUGH PREVENTION VCC UV DETECT VCC LIN LO COM Lead Definitions Symbol Description HIN LIN VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), out of phase High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IR2103 4 IR2103S www.irf.com IR2103(S) HIN LIN 50% 50% LIN ton tr 90% toff 90% tf HO LO LO 10% 10% Figure 1. Input/Output Timing Diagram 50% 50% HIN ton tr 90% toff 90% tf HO HIN LIN 50% 50% 10% 10% Figure 2. Switching Time Waveform Definitions 90% HO DT 10% DT LO 90% 10% Figure 4. Deadtime Waveform Definitions www.irf.com 5 IR2103(S) 1 40 0 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 1400 1200 1000 800 600 400 200 0 Typ. Max. 1 20 0 1 00 0 M ax. 8 00 6 00 T yp . 4 00 2 00 0 -50 -25 0 25 50 75 Temperature (oC) 1 00 1 25 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Figure 6B. Turn-On Time vs Supply Voltage 1000 Turn-On Delay Time (ns) 500 Turn-Off Delay Time (ns) Max. 800 600 Typ. 400 200 0 0 2 4 6 8 10 12 14 16 18 20 400 300 200 100 Typ. 0 -5 0 -2 5 0 25 50 75 100 125 M ax. Temperature (oC) Input Voltage (V) Figure 6C. Turn-On Time vs Input Voltage Figure 7A. Turn-Off Time vs Temperature 500 1000 Turn-Off Delay Time (ns 800 600 400 200 T yp 0 10 12 14 16 18 20 Turn-Off Delay Time (ns) 400 300 200 100 0 Typ. M ax. Max. 0 2 4 6 8 10 12 14 16 18 20 VBIAS Supply Voltage (V) Input V oltage (V ) Figure 7B. Turn-Off Time vs Supply Voltage 6 Figure 7C. Turn-Off Time vs Input Voltage www.irf.com IR2103(S) 500 Turn-On Rise Time (ns) 500 Turn-On Rise Time (ns) 400 300 200 100 Typ. 0 -50 Max. 400 300 M ax. 200 100 Typ. 0 10 12 14 16 18 20 -25 0 25 50 75 Temperature (oC) 100 125 VBIAS Supply Voltage (V) Figure 9A. Turn-On Rise Time vs Temperature 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) Figure 9B. Turn-On Rise Time vs Voltage 200 150 150 M ax. 100 Typ. 50 100 M ax. 50 Typ. 0 -5 0 -2 5 0 25 50 75 Temperature (oC) 100 125 0 10 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 10A. Turn Off Fall Time vs Temperature 1400 1200 Figure 10B. Turn Off Fall Time vs Voltage 1400 1200 Deadtime (ns) Deadtime (ns) 1000 800 600 T y p. 400 200 0 -5 0 -2 5 0 25 50 75 100 125 Mi. n M ax. 1000 M ax. 800 600 400 Mi. n 200 0 10 12 14 16 18 20 Typ. Temperature (oC) VBIAS Supply Voltage (V) Figure 11A. Deadtime vs Temperature Figure 11B. Deadtime vs Voltage www.irf.com 7 IR2103(S) 8 7 Input Voltage (V) 8 7 6 Input Voltage (V) 6 5 4 3 2 1 0 -50 -25 0 Temperature (oC) 5 4 3 2 1 0 Mi n. Min. Mi n. 25 50 75 10 0 12 5 10 12 14 16 18 20 Temperature (oC) VBIAS Supply Voltage (V) Figure12A. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Temperature 4 3 .2 Figure 12B. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Voltage 4 3.2 2.4 1.6 Max. 0.8 0 Input Voltage (V) 2 .4 1 .6 M ax. 0 .8 0 -5 0 -2 5 0 25 50 75 100 125 Input Voltage (V) 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 13A. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Temperature 1 Figure 13B. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Voltage 1 High Level Output Voltage (V) 0 .8 0 .6 0 .4 0 .2 0 -5 0 -2 5 0 25 50 75 100 125 M ax. High Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 10 12 Max. Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 14A. High Level Output vs Temperature 8 Figure 14B. High Level Output vs Voltage www.irf.com IR2103(S) 1 1 Low Level Output Voltage (V) Low Level Output Voltage (V) 0 .8 0 .6 0 .4 0 .2 0 -5 0 -2 5 0 25 50 75 100 125 0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 M ax. Max. Temperature (oC) Vcc Supply Voltage (V) Figure 15A. Low Level Output vs Temperature Offset Supply Leakge Current (A) Offset Supply Leakge Current (A) 500 400 300 200 100 M ax. 0 -5 0 -2 5 0 25 50 75 100 125 Figure 15B. Low Level Output vs Voltage 500 400 300 200 100 0 0 200 400 600 800 VB Boost Voltage (V) Max. Temperature (oC) Figure 16A. Offset Supply Current vs Temperature 150 Figure 16B. Offset Supply Current vs Voltage 150 VBS Supply Current (A) 120 90 60 M ax. 30 Typ. 0 -5 0 -2 5 0 25 50 75 100 125 VBS Supply Current (A) 120 90 60 30 Ty p. 0 10 12 14 16 18 20 Max . Temperature (oC) VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs Temperature www.irf.com Figure 17B. VBS Supply Current vs Voltage 9 IR2103(S) 700 VCC Supply Current (A) 700 600 500 400 300 200 100 Typ. -25 0 25 50 75 100 125 Max. VCC Supply Current (A) 600 500 400 300 200 100 0 10 12 14 16 18 20 Typ. M ax. 0 -50 Temperature (oC) Vcc Supply Voltage (V) Figure 18A. Vcc Supply Current vs Temperature 30 Figure 18B. Vcc Supply Current vs Voltage 30 Logic "1" Input Current (A) Logic "1" Input Current (A) 25 20 15 M a x. 10 Max 25 20 15 M ax. 10 5 0 Typ. 5 T y p. 0 -5 0 -2 5 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Vcc Supply Voltage (V) Figure 19A. Logic "1" Input Current vs Temperature 5 Logic "0" Input Current (A) Figure 19B. Logic "1" Input Current vs Voltage 5 Logic "0" Input Current (A) 4 3 2 Max. 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) 4 3 2 Max. 1 0 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 20A. Logic "0" Input Current vs Temperature 10 Figure 20B. Logic "0" Input Current vs Voltage www.irf.com IR2103(S) 11 VCC UVLO Threshold +(V) VCC UVLO Threshold -(V) 11 M ax . 10 9 8 7 6 -5 0 -2 5 0 25 50 75 100 125 Temperature (oC) 10 Max. 9 Typ. Typ. 8 7 Min. 6 -50 T y p. Typ. Mi n. -25 0 25 50 Temperature (oC) 75 100 125 Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature 500 Output Source Current (mA) Output Source Current (mA) 500 400 300 200 100 Min. 0 10 12 14 16 VBIAS Supply Voltage (V) 18 20 400 300 200 100 0 -5 0 -2 5 0 25 50 75 100 125 Temperature (oC) Typ. Typ. Mi. n Figure 22A. Output Source Current vs Temperature 700 Figure 22B. Output Source Current vs Voltage 700 Output Sink Current (mA) Output Sink Current (mA) 600 500 400 300 Mi. n 200 100 0 -5 0 -2 5 0 25 50 75 100 125 Typ. 600 500 400 Typ. 300 200 Mi n. 100 0 10 12 14 16 18 20 Temperature (oC) VBIAS Supply Voltage (V) Figure 23A. Output Sink Current vs Temperature www.irf.com Figure 23B. Output Sink Current vs Voltage 11 IR2103(S) 8-Lead PDIP 01-6014 01-3003 01 (MS-001AB) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC 01-6027 01-0021 11 (MS-012AA) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/30/2003 12 www.irf.com |
Price & Availability of IR2103
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |