![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 1 G1421 global mixed-mode technology inc. 2w stereo audio amplifier with no headphone coupling capacitor function features ? depop circuitry integrated ? output power at 1% thd+n, vdd=5v --1.8w/ch (typical) into a 4 ? ? ? ? load --1.2w/ch (typical) into a 8 ? ? ? ? load ? eliminates headphone amplifier output cou- pling capacitors ? maximum output power clamping circuitry integrated ? bridge-tied load (btl), single-ended (se), and stereo headphone amplifier (hp-in) modes supported ? stereo input mux ? mute and shutdown control available ? surface-mount power package 24-pin tssop-p applications ? stereo power amplifiers for notebooks or desktop computers ? multimedia monitors ? stereo power amplifiers for portable audio systems general description G1421 is a stereo audio power amplifier in 24pin tssop thermal pad package. it can drive 1.8w con- tinuous rms power into 4 ? load per channel in bridge-tied load (btl) mode at 5v supply voltage. its thd is smaller than 1% under the above operation condition. to simplify the audio system design in the notebook application, G1421 supports the bridge-tied load (btl) mode for driving the speakers, single-end (se) mode for driving the headphone. in the hp-in mode, it can support a dc value to the phone-jacket and drive the headphone without the audio amplifier outputs coupling capacitors. G1421 can mute the output when mute-in is activated. for the low current consumption applications, the shdn mode is sup- ported to disable G1421 when it is idle. the current consumption can be further reduced to below 5a. G1421 also supports two input paths, that means two different gain loops can be set in the same pcb and choosing either one by setting hp/ line pin. it en- hances the hardware designing flexibility. G1421 also supports an extra function -- the maximum output power clamping function to protect the speakers or headphones from burned-out. ordering information order number temp. range package G1421 -40c to +85c tssop-24l pin configuration rout+ rlinein rhpin rbypass rvdd hp-in hp/line rout- se/btl gnd/hs lout+ llinein lhpin lbypass lvdd shutdown mute out lout- mute in G1421 gnd/hs tssop-24l 13 24 23 22 21 20 19 18 17 16 15 5 6 7 8 9 10 11 12 1 4 3 2 14 tj vol 14 thermal pad top view bottom view gnd/hs gnd/hs rout+ rlinein rhpin rbypass rvdd hp-in hp/line rout- se/btl gnd/hs lout+ llinein lhpin lbypass lvdd shutdown mute out lout- mute in G1421 gnd/hs tssop-24l 13 24 23 22 21 20 19 18 17 16 15 5 6 7 8 9 10 11 12 1 4 3 2 14 tj vol 14 thermal pad top view bottom view gnd/hs gnd/hs
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 2 G1421 global mixed-mode technology inc. absolute maximum ratings supply voltage, v cc ??????..?...???...?...6v operating ambient temperature range t a ??.??????????..?.??.-40c to +85c maximum junction temperature, t j ?..????150c storage temperature range, t stg? .?-65c to+150c soldering temperature, 10seconds, t s ????..260c power dissipation (1) t a 25c????????????????..2.7w t a 70c????????????????..1.7w t a 85c???????.?????????.1.4w electrostatic discharge, v esd human body mode lout- pin?????????..????-8000 to 8000v other pins????????????...-3000 to 3000 (2) note: (1) : recommended pcb layout. (2) : human body model : c = 100pf, r = 1500 ? , 3 positive pulses plus 3 negative pulses electrical characteristics dc electrical characteristics, t a =+25c parameter symbol conditions min typ max unit v dd =3.3v hp-in 5.5 7 v dd = 5v hp-in 6.5 8 stereo btl 7 9 v dd =3.3v stereo se 3.5 5.6 stereo btl 8 11 supply current i dd v dd = 5v stereo se 4 6.5 ma dc differential output voltage v o(diff) v dd = 5v,gain = 2 5 30 mv stereo btl 8 11 hp-in 6.5 8 supply current in mute mode i dd(mute) v dd = 5v stereo se 4 6.5 ma i dd in shutdown i sd v dd = 5v 2 5 a (ac operation characteristics, v dd = 5.0v, t a =+25c, r l = 4 ? ? ? ? , unless otherwise noted) parameter symbol conditions min typ max unit thd = 1%, btl, r l = 4 ? 1.8 thd = 1%, btl, r l = 8 ? 1.12 thd = 10%, btl, r l = 4 ? 2 thd = 10%, btl, r l = 8 ? 1.4 w thd = 1%, se, r l = 4 ? 500 thd = 1%, se, r l = 8 ? 320 thd = 10%, se, r l = 4 ? 650 thd = 10%, se, r l l = 8 ? 400 output power (each channel) see note p (out) thd = 0.5%, se, r l = 32 ? 90 mw p o = 1.6w, btl, r l = 4 ? 500 p o = 1w, btl, r l = 8 ? 150 p o = 75mw, se, r l = 32 ? 20 total harmonic distortion plus noise thd+n v i = 1v, rl = 10k ? , g = 1 10 m% maximum output power bandwidth b om g = 1, thd =1% 20 khz phase margin r l = 4 ? , open load 60 power supply ripple rejection psrr f = 120hz 75 db mute attenuation 85 db channel-to-channel output separation f = 1khz 82 db line/hp input separation 80 db btl attenuation in se mode 85 db input impedance zi 2 m ? signal-to-noise ratio p o = 500mw, btl 90 db output noise voltage v n output noise voltage 55 v (rms) note :output power is measured at the output terminals of the ic at 1khz. ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 3 G1421 global mixed-mode technology inc. (ac operation characteristics, v dd = 3.3v, t a =+25c, r l = 4 ? ? ? ? , unless otherwise noted) parameter symbol conditions min typ max unit thd = 1%, btl, r l = 4 ? 0.8 thd = 1%, btl, r l = 8 ? 0.5 thd = 10%, btl, r l = 4 ? 1 thd = 10%, btl, r l = 8 ? 0.6 w thd = 1%, se, r l = 4 ? 230 thd = 1%, se, r l = 8 ? 140 thd = 10%, se, r l = 4 ? 290 thd = 10%, se, r l l = 8 ? 180 output power (each channel) see note p (out) thd = 0.5%, se, r l = 32 ? 43 mw p o = 1.6w, btl, r l = 4 ? 270 p o = 1w, btl, r l = 8 ? 100 p o = 75mw, se, r l = 32 ? 20 total harmonic distortion plus noise thd+n v i = 1v, rl = 10k ? , g = 1 10 m% maximum output power bandwidth b om g = 1, thd 1% 20 khz phase margin r l = 4 ? , open load 60 power supply ripple rejection psrr f = 120hz 75 db mute attenuation 85 db channel-to-channel output separation f = 1khz 80 db line/hp input separation 80 db btl attenuation in se mode 85 db input impedance zi 2 m ? signal-to-noise ratio p o = 500mw, btl 90 db output noise voltage v n output noise voltage 55 v (rms) note :output power is measured at the output terminals of the ic at 1khz. ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 4 G1421 global mixed-mode technology inc. pin description pin name i/o function 1,12,13,24 gnd/hs ground connection for circuitry, directly connected to thermal pad. 2 tj o source a current inversely to the junction temperature. this pin should be left uncon- nected during normal operation. for more information, see the junction temperature measurement section of this document. 3 lout+ o left channel + output in btl mode, + output in se mode. 4 lline in i left channel line input, selected when hp/ pin is held low. 5 lhp in i left channel headphone input, selected when hp/pin is held high. 6 lbypass connect to voltage divider for left channel internal mid-supply bias. 7 lvdd i supply voltage input for left channel and for primary bias circuits. 8 shutdown i shutdown mode control signal input, places entire ic in shutdown mode when held high, i dd = 5a. 9 mute out o follows mute in pin, provides buffered output. 10 lout- o left channel - output in btl mode, high impedance state in se mode. supply vdd/2 to the phone jacket in hp-in mode. 11 mute in i mute control signal input, hold low for normal operation, hold high to mute. 14 se/ i mode control signal input, hold low for btl mode, hold high for se mode. 15 rout- o right channel - output in btl mode, high impedance state in se mode. 16 hp/ i mux control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). 17 hp-in this pin can activate the hp-in mode to supplied the vdd/2 at lout- onto the phone jacket. so the dc blocking capacitors can be removed in hp-in type (like se mode except no dc blocking capacitors). hold high to activate this function. if this function is not used, it should be strongly tied to low. 18 rvdd i supply voltage input for right channel. 19 rbypass connect to voltage divider for right channel internal mid-supply bias. 20 rhp in i right channel headphone input, selected when hp/pin is held high. 21 rline in i right channel line input, selected when hp/pin is held low. 22 rout+ o right channel + output in btl mode, + output in se mode. 23 vol i the output power can be clamped by setting a low bound voltage to this pin. the high bound voltage w ill be generated internally. the output voltage w ill be clam ped between high/low bound voltages. then the output power is limited. it is weakly pull-low inter- nally, let this pin floating or tied to gnd can deactivate this function. typical characteristics table of graphs 31,32,34,35,37,38,40,41 v n output noise voltage supply ripple rejection ratio crosstalk closed loop response 53,54,55,56 i dd supply current p d power dissipation total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency figure thd +n total harmonic distortion plus nois e vs frequency 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,28,29,30 vs output power 1,3,6,9,10,13,16,19,22,25,26,27,33,36,39 vs frequency 42,43,44 vs frequency 45,46,47 vs frequency 48,49,50,51,52 vs output power 62,63,64,65 vs frequency vs supply voltage 57 vs supply voltage 58,59 p o output power vs load resistance 60,61 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w vdd=5v rl=3 btl 20khz 1khz 20 hz vdd=5v rl=3 btl av=-2v/v po=1.8w po=1.5w figure 1 figure 2 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 5 total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w vdd=5v rl=4 btl 20khz 1khz 20 hz vdd=5v rl=4 btl po=1.5w av=-1v/v av=-4v/v av=-2v/v vdd=5v rl=4 btl av=-2v/v po=1.5w po=0.75w po=0.25w vdd=5v rl=8 btl av=-2v/v 20khz 1khz 20hz figure 3 figure 4 figure 5 figure 6 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 6 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w vdd=5v rl=8 btl av=-2v/v po=1w po=0.25w po=0.5w vdd=5v rl=8 btl po=1w av=-4v/v av=-2v/v av=-1v/v vdd=3.3v rl=3 btl 20khz 1khz 20hz vdd=3.3v rl=4 btl 20khz 1khz 20hz figure 7 figure 8 figure 9 figure 10 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 7 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 btl po=0.65w av=-4v/v av=-2v/v av=-1v/v vdd=3.3v rl=4 btl av=-2v/v po=0.7w po=0.35w po=0.1w 20khz 1khz 20hz vdd=3.3v rl=8 btl vdd=3.3v rl=8 btl po=0.4w av=-1v/v av=-2v/v av=-4v/v figure 11 figure 12 figure 13 figure 14 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 8 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=8 btl av=-2v/v po=0.1w po=0.4w po=0.25w vdd=5v rl=4 se 20khz 1khz 100hz vdd=5v rl=4 se po=0.5w av=-1v/v av=-2v/v av=-4v/v vdd=5v rl=4 se av=-2v/v po=0.1w po=0.4w po=0.25w figure 15 figure 16 figure 17 figure 18 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 9 total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 200m 2m 5m 10m 20m 50m 100m w vdd=5v rl=8 se vdd=5v rl=8 se po=0.25w 1khz 20khz 100hz av=-1v/v av=-4v/v av=-2v/v vdd=5v rl=8 se av=-2 po=0.05w po=0.1w po=0.25w vdd=5v rl=32 se 1khz 20hz 20khz figure 19 figure 20 figure 21 figure 22 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 10 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output power 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=32 se po=75mw av=-4v/v av=-2v/v av=-1v/v vdd=5v rl=32 se po=25mw po=75mw po=50mw 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 20khz 100hz 1khz vdd=5v rl=4 hp-in av=-2v/v 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w vdd=5v rl=8 hp-in av=-2v/v 1khz 100hz 20khz figure 23 figure 24 figure 25 figure 26 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 11 total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 500m 2m 5m 10m 20m 50m 100m 200m w vdd=5v rl=32 hp-in av=-2v/v 1khz 20khz 100hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=4 hp-in po=0.5w av=-1v/v av=-2v/v av=-4v/v 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=4 hp-in av=-2v/v po=0.1w po=0.25w po=0.4w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=8 hp-in po=0.25w av=-1v/v av=-2v/v av=-4v/v figure 27 figure 28 figure 29 figure 30 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 12 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 ,se av=-2 20khz 1khz 100hz vdd=3.3v rl=4 se po=0.2w av=-1v/v av=-4v/v av=-2v/v 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=8 hp-in av=-2v/v po=0.25w po=0.1w po=0.05w 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=32 hp-in av=-2v/v po=70mw po=25mw po=50mw figure 31 figure 32 figure 33 figure 34 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 13 total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 200m 2m 5m 10m 20m 50m 100m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 se av=-2 po=100mw po=50mw po=150mw vdd=3.3v rl=8 ,se av=-2 100hz 1khz 20khz vdd=3.3v rl=8 se po=100mw av=-4v/v av=-1v/v av=-2v/v vdd=3.3v rl=8 se po=25mw po=50mw po=100mw figure 35 figure 36 figure 37 figure 38 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 14 total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise output noise voltage vs output frequency vs frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 100m 2m 5m 10m 20m 50m w 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 10u 100u 20u 30u 40u 50u 60u 70u 80u 90u v 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=32 se 20hz 20khz 1khz vdd=3.3v rl=32 se po=30mw av=-1v/v av=-2v/v av=-4v/v vdd=3.3v rl=32 se po=10mw po=30mw po=20mw vdd=5v rl=4 bw=22hz to 20khz vo btl vo se figure 39 figure 40 figure 41 figure 42 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 15 output noise voltage output noise voltage vs frequency vs frequency supply ripple rejection ratio supply ripple rejection ratio vs frequency vs frequency 10u 100u 20u 30u 40u 50u 60u 70u 80u 90u v 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 bw=22hz to 20khz vo btl vo se figure 44 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 16 -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=4 cb=4.7uf btl se figure 45 10u 100u 20u 30u 40u 50u 60u 70u 80u 90u v 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v hp-in rl=4 bw=22hz to 20khz a- weighted filter figure 43 -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v hp-in rl=4 cb=4.7uf figure 46 supply ripple rejection ratio crosstalk vs frequency vs frequency crosstalk vs frequency crosstalk vs frequency -100 -30 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v po=75mw rl=32 se r to l l to r -100 -20 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v po=0.75w rl=4 btl l to r r to l figure 49 figure 50 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 17 -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 cb=4.7uf btl se -100 -20 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v po=1.5w rl=4 btl l to r r to l figure 47 figure 48 crosstalk vs frequency crosstalk vs frequency -100 -30 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v po=35mw rl=32 se r to l l to r figure 51 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 18 global mixed-mode technology inc. G1421 -100 -20 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v po=75mw rl=32 hp-in figure 52 r to l l to r closed loop response figure 53 closed loop response figure 54 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 19 closed loop response figure 55 closed loop response figure 56 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 20 supply current vs supply voltage 0 1 2 3 4 5 6 7 8 9 10 3456 supply voltage(v) supply current(ma) stereo btl stereo se output power vs supply voltage 0 0.5 1 1.5 2 2.5 2.5 3.5 4.5 5.5 6.5 supply voltage(v) po-output power (w) thd+n=1% btl each channel rl=3 output power vs supply voltage 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2.5 3.5 4.5 5.5 6.5 supply voltage(v) po-output power(w) thd+n=1% se each channel rl=4 rl=8 output power vs load resistance 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 4 8 121620242832 load resistance( ) po-output power(w) vdd=5v thd+n=1% btl each channel vdd=3.3v figure 57 figure 58 figure 59 figure 60 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 21 output power vs load resistance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 4 8 121620242832 load resistance( ) po-output power(w) thd+n=1% se each channel vdd=3.3v vdd=5v power dissipation vs output power 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 po-output power(w) power dissipation(w) vdd=5v btl each channel rl=3 rl=4 rl=8 power dissipation vs output power 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.25 0.5 0.75 1 output power(w) power dissipation(w) vdd=3.3v btl each channel rl=3 rl=4 rl=8 power dissipation vs output power 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.2 0.4 0.6 0.8 output power(w) power dissipation(w) vdd=5v se each channel rl=4 rl=8 rl=32 figure 61 figure 62 figure 63 figure 64 global mixed-mode technology inc. G1421 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 22 power dissipation vs output power 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.05 0.1 0.15 0.2 0.25 0.3 output power(w) power dissipation (w) vdd=3.3v se each channel rl=4 rl=8 rl=32 figure 65 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 23 global mixed-mode technology inc. G1421 recommended pcb layout ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 24 G1421 global mixed-mode technology inc. block diagram parameter measurement information left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 4/8/32ohm btl mode test circuit ac source left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 4/8/32ohm btl mode test circuit ac source left mux + _ 3 10 llinein lhpin lbypass 18 rvdd lout- lout+ right mux rhpin rlinein + _ 15 22 rout+ rout- 7 lvdd bias circuits modes control circuits 17 16 14 2 tj se/btl hp/line hp-in shutdown rbypass mutein muteout vol 21 20 19 11 9 8 23 6 5 4 20k 20k left mux + _ 3 10 llinein lhpin lbypass 18 rvdd lout- lout+ right mux rhpin rlinein + _ 15 22 rout+ rout- 7 lvdd bias circuits modes control circuits 17 16 14 2 tj se/btl hp/line hp-in shutdown rbypass mutein muteout vol 21 20 19 11 9 8 23 6 5 4 20k 20k ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 25 G1421 global mixed-mode technology inc. parameter measurement information (continued) left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 32ohm se mode test circuit vdd ac source left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 32ohm se mode test circuit vdd ac source left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 32ohm hp-in mode (non-dc blocking cap) test circuit vdd ac source left mux + _ 11 8 23 mutein 6 5 4 17 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass vol shutdown hp-in hp/line se/btl lvdd lout- lout+ rl 32ohm hp-in mode (non-dc blocking cap) test circuit vdd ac source ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 26 G1421 global mixed-mode technology inc. application circuits with dc blocking capacitors application gnd/hs vol rout+ rlinein rhpin lvdd rvdd hp-in hp/line rout- se/btl gnd/hs r 100k ? 1k ? phonojack 1 3 4 2 coutr cfl rfl audio source cil ril r 100k ? csr 1k ? coutr gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfl cfr G1421 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19 gnd/hs vol rout+ rlinein rhpin lvdd rvdd hp-in hp/line rout- se/btl gnd/hs r 100k ? 1k ? phonojack 1 3 4 2 coutr cfl rfl audio source cil ril r 100k ? csr 1k ? coutr gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfl cfr G1421 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 27 G1421 global mixed-mode technology inc. application circuits (continued) no dc blocking capacitors application logical truth table inputs output amplifier states se/ btl hp/ line hp-in mute in shutdown mute out input l/r out+ l out- r out- mode x x x ---- high ---- x ---- ---- ---- mute low x x high ---- high x vdd/2 vdd/2 vdd/2 mute high x x high ---- high x vdd/2 ---- ---- mute x x high high ---- high x vdd/2 vdd/2 ---- mute low low low low low low l/r line btl output btl output btl output btl low high low low low low l/r hp btl output btl output btl output btl high low low low low low l/r line se output ---- ---- se high high low low low low l/r hp se output ---- ---- se x low high low low low l/r line se output vdd/2 ---- hp-in x high high low low low l/r hp se output vdd/2 ---- hp-in gnd/hs vol rout+ rlinein rhpin lvdd rvdd hp-in hp/line rout- se/btl gnd/hs phonojack cfl rfl audio source cil ril gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfr cfr 3 1 2 4 5 G1421 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19 cbl r c 4.7 ? c c 0.1f r c 4.7 ? c c 0.1f gnd/hs vol rout+ rlinein rhpin lvdd rvdd hp-in hp/line rout- se/btl gnd/hs phonojack cfl rfl audio source cil ril gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfr cfr 3 1 2 4 5 G1421 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19 cbl r c 4.7 ? c c 0.1f r c 4.7 ? c c 0.1f ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 28 G1421 global mixed-mode technology inc. application information input mux operation there are two input signal paths ? hp & line. with the prompt setting, G1421 allows the setting of different gains for btl and se modes. generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. se gain (hp) = -(r f(hp) /r i(hp) ) btl gain (line) = -2(r f(line) /r i(line) ) to achieve headphones and speakers listening parity, (r f(line /r i(line) ) is suggested to be 5 times of (r f(hp) / r i(hp) ). the ratio of (r f(hp) /r i(hp) ) can be determined by the applications. when the optimum distortion per- formance into the headphones (clear sound) is impor- tant, gain of ?1 ((r f(hp) / r i(hp) ) = 1) is suggested. single ended mode operation G1421 can drive clean, low distortion se output power into headphone loads (generally 16 ? or 32 ? ) as in figure 1. please refer to electrical characteristics to see the performances. a coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. choosing the coupling capaci- tor will also determine the 3 db point of the high-pass filter network, as figure 2. f c =1/(2 r l c c ) for example, a 68uf capacitor with 32 ? headphone load would attenuate low frequency performance be- low 73hz. so the coupling capacitor should be well chosen to achieve the excellent bass performance when in se mode operation. bridged-tied load mode operation G1421 has two linear amplifiers to drive both ends of the speaker load in bridged-tied load (btl) mode operation. figure 3 shows the btl configuration. the differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. this configuration in effect will double the voltage swing on the load as compared to a ground reference load. in btl mode, the peak-to-peak voltage v o (pp) on the load will be two times than a ground reference configuration. the voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. another benefit of using differential driving configuration is that btl operation cancels the dc off- sets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. low-frequency performance is then lim- ited only by the input network and speaker responses. cost and pcb space can be minimized by eliminating the dc coupling capacitors. vdd vo(pp) vo(pp) c c r l figure 1 vdd vo(pp) vo(pp) c c r l figure 1 -3 db f c figure 2 -3 db f c figure 2 vdd vo(pp) vdd -vo(pp) 2xvo(pp) r l figure 3 vdd vo(pp) vdd -vo(pp) 2xvo(pp) r l figure 3 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 29 G1421 global mixed-mode technology inc. hp-in mode operation an internal weakly pull-up circuit is connected to hp-in control pin (pin 17). when this pin is left un- connected or tied to vdd, hp-in mode is activated, ignoring se/ btl setting. in normal se/ btl mode operations, this hp-in pin should be tied to gnd. in hp-in mode, the linear amplifiers of lout+ (pin 3) /rout+ (pin 22) are still alive, the linear amplifier of rout- (pin 15) is deactivated, the linear amplifier of lout- (pin 10) supplies vdd/2 on this pin to cancel the dc offsets. (please refer to logical truth table and no dc cap application circuit for detailed operation.) if connected vdd/2 on the lout- (pin 10) to the phone jacket, the dc offset can be eliminated without using coupling capacitors in headphone applications. by using hp-in mode, cost and pcb space can be further minimized than traditional headphone applica- tions with coupling capacitors. the hp-in configura- tion is shown on figure 4. short circuit protection is implemented on lout- (pin10) to avoid the short-circuit damage caused by the sleeve of the phone jack connected to ground ac- cidentally during the module assembling. when short-circuit is detected, the linear amplifier of lout- (pin 10) will turn off for a period. after this period, it activates again. if the short circuit condition still exists, it will be turned off again. with this protection, the damage caused by larger dc short circuit current (from vdd/2 to gnd) can be avoided. mute and shutdown mode operations G1421 implements the mute and shutdown mode operations to reduce supply current, i dd, to the ab- solute minimum level during nonuse periods for battery-power conservation. when the shutdown pin (pin 8) is pulled high, all linear amplifiers will be de- activated to mute the amplifier outputs. and G1421 enters an extra low current consumption state, i dd is smaller than 5 a. if pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the vdd/2 dc voltage on the output to mute the ac performance. in mute mode operation, the current consumption will be a little different between btl, se and hp-in modes. (se < hp-in < btl) typically, the supply current is about 2.5ma in btl mute op- eration. shutdown and mute-in pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. maximum power clampping function G1421 supports the maximum output power clamping function to avoid damaging the speaker when the amplifier output a power beyond the speaker tolerance. the vol pin (pin 23) is weakly pull-low internally. if inputting a non-zero voltage (low boundary voltage) to the vol pin, G1421 will generate a high boundary voltage which the difference between the vdd/2 and the high boundary voltage is the same as the differ- ence between the vdd/2 and the low boundary volt- age. ( i.e. v oh ? vdd/2 = vdd/2 ? v ol ) then the out- puts of linear amplifiers will be effectively limited be- tween the high/low boundary voltage, the maximum output power is clamped. by setting the voltage of vol, the maximum output power can be well controlled. when the maximum power clamping function is not used, the vol pin should be floated or tied to gnd. vdd vo(pp)+vdd/2 vdd/2 vo(pp) vdd/2 r l figure 4 vdd vo(pp)+vdd/2 vdd/2 vo(pp) vdd/2 r l figure 4 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 30 G1421 global mixed-mode technology inc. optimizing depop operation circuitry has been implemented in G1421 to mini- mize the amount of popping heard at power-up and when coming out of shutdown mode. popping oc- curs whenever a voltage step is applied to the speaker and making the differential voltage gener- ated at the two ends of the speaker. to avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(c b x100k ? ) Q 1/(c i *(r i +r f )). where 100k ? is the output impedance of the mid-rail generator, c b is the mid-rail bypass capaci- tor, c i is the input coupling capacitor, r i is the input impedance, r f is the gain setting impedance which is on the feedback path. c b is the most important capacitor. besides it is used to reduce the popping, c b can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. de-popping circuitry of G1421 is shown on figure 5. the pnp transistor limits the voltage drop across the 50k ? by slewing the internal node slowly when power is applied. at start-up, the voltage at bypass capacitor is 0. the pnp is on to pull the mid-point of the bias circuit down. so the capacitor sees a lower effective voltage, and thus the charg- ing is slower. this appears as a linear ramp (while the pnp transistor is conducting), followed by the expected exponential ramp of an r-c circuit. junction temperature measurement characterizing a pcb layout with respect to thermal impedance is very difficult, as it is usually impossi- ble to know the junction temperature of the ic. G1421 tj (pin 2) sources a current inversely pro- portional to the junction temperature. typically tj sources?120 a for a 5v supply at 25 c . and the slope is approximately 0.22 a/ c . as the resistors have a tolerance of 20%, these values should be calibrated on each device. when the temperature sensing function is not used, tj pin can be left floating or tied to vdd to reduce the current con- sumption. temperature sensing circuit is shown on figure 6. bypass vdd 100 k ? 100 k ? 50 k ? figure 5 bypass vdd 100 k ? 100 k ? 50 k ? figure 5 tj vdd r r 5r figure 6 tj vdd r r 5r figure 6 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 31 G1421 global mixed-mode technology inc. package information note: 1. package body sizes exclude mold flash protrusions or gate burrs 2. tolerance 0.1mm unless otherwise specified 3. coplanarity : 0.1mm 4. controlling dimension is millimeter. converted inch dimensions are not necessarily exact. 5. die pad exposure size is according to lead frame design. 6. follow jedec mo-153 dimension in mm dimension in inch symbol min. nom. max. min. nom. max. a ----- ----- 1.15 ----- ----- 0. 045 a1 0.00 ----- 0.10 0. 000 ----- 0. 004 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 ----- 0.30 0. 007 ----- 0. 012 c 0.09 ----- 0.20 0. 004 ----- 0. 008 d 7.70 7.80 7.90 0.303 0.307 0.311 e 6.20 6.40 6.60 0.244 0.252 2.260 e1 4.30 4.40 4.50 0.169 0.173 0.177 e ----- 0.65 ----- ----- 0. 026 ----- l 0.45 0.60 0.75 0.018 0.024 0.030 y ----- ----- 0.10 ----- ----- 0. 004 0o ----- 8o 0o ----- 8o taping specification gmt inc. does not assume any res ponsibility for use of any circuitry described, no circuit patent licenses are implied and gmt inc. reserves the right at any t ime without notice to change said circuitry and specifications. feed direction typical tssop package orientation feed direction typical tssop package orientation 24 e1 e d 1 b a a1 a2 c l e 3.85 1.88 1.88 2.8 0.71 note 5 24 e1 e d 1 b a a1 a2 c l e 3.85 1.88 1.88 2.8 0.71 note 5 |
Price & Availability of G1421
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |