Part Number Hot Search : 
GP1C331 AD9768 UGF12HT 12IO1 1N6337US FB390 SI8920 LH5481
Product Description
Full Text Search
 

To Download SST201-T1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  j/sst201 series siliconix p-37995erev. d, 11-aug-94 1 n-channel jfets j201 sst201 j202 sst202 j204 sst204 product summary part number v gs(off) (v) v (br)gss min (v) g fs min (ms) i dss min (ma) j/sst201 0.3 to 1.5 40 0.5 0.2 j/sst202 0.8 to 4 40 1 0.9 j/sst204 0.3 to 2 25 0.5 0.2 features benefits applications  low cutoff voltage: j201 <1.5 v  high input impedance  very low noise  high gain: a v = 80 @ 20  a  full performance from low voltage power supply: down to 1.5 v  low signal loss/system error  high system sensitivity  high quality low-level signal amplification  high-gain, low-noise amplifiers  low-current, low-voltage battery-powered amplifiers  infrared detector amplifiers  ultra high input impedance pre-amplifiers description the j/sst201 series features low leakage, very low noise, and low cutoff voltage for use with low-level power supplies. the j/sst201 is excellent for battery powered equipment and low current amplifiers. the j series, to-226 (to-92) plastic package, provides low cost, while the sst series, to-236 (sot-23) package, provides surface-mount capability. both the j and sst series are available in tape-and-reel for automated assembly (see packaging information). for similar products in to-206aa (to-18) packaging, see the 2n4338/4339/4340/4341 data sheet. to-226aa (to-92) top view j201 j202 j204 d g s 1 2 3 d s g to-236 (sot-23) 2 3 1 top view sst201 (p1)* sst202 (p2)* sst204 (p4)* *marking code for to-236 updates to this data sheet may be obtained via facsimile by calling siliconix faxback, 1-408-970-5600. please request faxback document #70233. applications information may also be obtained via faxback, request document #70595 and document #70599.
j/sst201 series 2 siliconix p-37995erev. d, 11-aug-94 absolute maximum ratings gate-drain, gate-source voltage 40 v . . . . . . . . . . . . . . . . . . . . . . . . . . gate current 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lead temperature ( 1 / 16 o from case for 10 sec.) 300  c . . . . . . . . . . . . . . . storage temperature 55 to 150  c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . operating junction temperature 55 to 150  c . . . . . . . . . . . . . . . . . . . . power dissipation a 350 mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . notes a. derate 2.8 mw/  c above 25  c specifications a limits j/sst201 j/sst202 j/sst204 d parameter symbol test conditions typ b min max min max min max unit static gate-source breakdown voltage v (br)gss i g = 1  a , v ds = 0 v 40 40 25 v gate-source cutoff voltage v gs(off) v ds = 15 v, i d = 10 na 0.3 1.5 0.8 4 0.3 2 saturation drain current c i dss v ds = 15 v, v gs = 0 v 0.2 1 0.9 4.5 0.2 3 ma gate reverse current i gss v gs = 20 v, v ds = 0 v 2 100 100 100 pa g a t e r everse c urren t i gss t a = 125  c 1 na gate operating current i g v dg = 10 v, i d = 0.1 ma 2 pa drain cutoff current i d(off) v ds = 15 v, v gs = 5 v 2 p a gate-source forward voltage v gs(f) i g = 1 ma , v ds = 0 v 0.7 v dynamic common-source forward transconductance g fs v ds = 15 v, v gs = 0 v f = 1 khz 0.5 1 0.5 ms common-source input capacitance c iss v ds = 15 v, v gs = 0 v f1mh 4.5 pf common-source reverse transfer capacitance c rss ds , gs f = 1 mhz 1.3 p f equivalent input noise voltage e n v ds = 10 v, v gs = 0 v f = 1 khz 6 nv M hz notes a. t a = 25  c unless otherwise noted. npa b. typical values are for design aid only, not guaranteed nor subject to production testing. nh c. pulse test: pw  300  s duty cycle  3%. d. see 2n/sst5484 series for j204 typical characteristic curves.
j/sst201 series siliconix p-37995erev. d, 11-aug-94 3 typical characteristics (25  c unless noted) 0.1 pa 1 pa 10 pa 100 pa 1 na 10 na 01530 gate leakage current v dg drain-gate voltage (v) gate leakage (a) i g i gss @ 125  c i gss @ 25  c t a = 125  c t a = 25  c i d = 100  a i d = 500  a i g @ i d = 500  a i d = 100  a 10 0 8 6 4 2 05 4 3 2 1 5 4 1 3 2 0 drain current and transconductance vs. gate-source cutoff voltage v gs(off) gate-source cutoff voltage (v) saturation drain current (ma) i dss g fs forward transconductance (ms) i dss @ v ds = 10 v, v gs = 0 v g fs @ v ds = 10 v, v gs = 0 v f = 1 khz g fs i dss 1500 035 4 2 1 1200 900 600 300 0 0.01 0.1 1 2 1.6 0.8 0.4 0 10 8 4 2 0 400 01216 420 360 160 80 0 2 01216 8 420 1.6 1.2 0.8 0.4 0 output characteristics on-resistance and output conductance vs. gate-source cutoff voltage common-source forward transconductance vs. drain current output characteristics i d drain current (ma) v gs(off) gate-source cutoff voltage (v) v ds drain-source voltage (v) v ds drain-source voltage (v) g fs forward transconductance (ms) drain current ( i d drain current (ma) i d t a = 55  c 125  c 0.2 v 0.4 v v gs = 0 v 0.6 v 0.9 v 0.1 v 0.3 v r ds @ i d = 100  a, v gs = 0 v g os @ v ds = 10 v, v gs = 0 v, f = 1 khz r ds g os 0.3 v 6 1.2 240 8 v gs(off) = 1.5 v v gs(off) = 0.7 v  a) 25  c 0.5 v 1.2 v v ds = 10 v f = 1 khz v gs(off) = 1.5 v v gs = 0 v s) g  output conductance (  r ds(on) drain-source on-resistance ( ) 
j/sst201 series 4 siliconix p-37995erev. d, 11-aug-94 typical characteristics (25  c unless noted) 2 0 1.2 1.6 2 0.8 0.4 1.6 1.2 0.8 0.4 0 transfer characteristics v gs gate-source voltage (v) drain current (ma) i d t a = 55  c 125  c 25  c v ds = 10 v v gs(off) = 1.5 v 500 0 0.3 0.2 0.1 0.4 0.5 400 300 200 100 0 transfer characteristics v gs gate-source voltage (v) t a = 55  c 125  c 25  c v ds = 10 v v gs(off) = 0.7 v drain current ( i d  a) 0.1 1 0.01 4 1.2 2 1.6 0.8 0.4 0 3.2 2.4 1.6 0.8 0 0.01 0.1 1 200 160 120 80 40 0 2000 1600 1200 800 400 0 a v voltage gain i d drain current (ma) circuit voltage gain vs. drain current transconductance vs. gate-source voltage t a = 55  c 125  c g fs forward transconductance (ms) v gs gate-source voltage (v) on-resistance vs. drain current i d drain current (ma) 25  c v gs(off) = 0.7 v 1.5 v v gs(off) = 0.7 v 1.5 v 1.5 0 0.3 0.4 0.2 0.1 0.5 1.2 0.9 0.6 0.3 0 transconductance vs. gate-source voltage t a = 55  c 125  c g fs forward transconductance (ms) v gs gate-source voltage (v) 25  c v ds = 10 v f = 1 khz v gs(off) = 0.7 v v ds = 10 v f = 1 khz v gs(off) = 1.5 v a v  g fs r l 1  r l g os assume v dd = 15 v, v ds = 5 v r l  10 v i d r ds(on) drain-source on-resistance ( ) 
j/sst201 series siliconix p-37995erev. d, 11-aug-94 5 typical characteristics (25  c unless noted) 10 0 12 16 20 8 4 8 6 4 2 0 5 0 12 20 16 8 4 4 3 2 1 0 common-source reverse feedback capacitance vs. gate-source voltage reverse feedback capacitance (pf) c rss v gs gate-source voltage (v) v ds = 0 v 10 v f = 1 mhz v gs gate-source voltage (v) common-source input capacitance vs. gate-source voltage input capacitance (pf) c iss v ds = 0 v 10 v f = 1 mhz 10 100 1 k 100 k 10 k 20 16 12 8 4 0 output conductance vs. drain current i d drain current (ma) t a = 55  c 125  c equivalent input noise voltage vs. frequency f frequency (hz) v ds = 10 v i d @ 100  a v gs = 0 v 3 2.4 1.8 0.8 0.4 0 0.01 0.1 1 25  c output characteristics 300 0 0.5 240 180 120 60 0 v ds drain-source voltage (v) 0.1 0.2 0.3 0.4 drain current (ma) i d output characteristics 1.0 0 1.0 0.8 0.6 0.4 0.2 0 v ds drain-source voltage (v) 0.2 0.4 0.6 0.8 v gs(off) = 0.7 v v gs = 0 v 0.1 0.2 0.3 0.4 0.5 v gs(off) = 1.5 v v gs = 0 v 0.3 0.6 0.9 1.2 v ds = 10 v f = 1 khz v gs(off) = 1.5 v s) g  output conductance (  drain current ( i d  a) nv e n / hz ) ( noise voltage


▲Up To Search▲   

 
Price & Availability of SST201-T1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X