Part Number Hot Search : 
ANTX2N6 STB8NC50 GRM31CR7 IRF74 LT3032 2040CT JANTXV STK66083
Product Description
Full Text Search
 

To Download UPC2798GR-E1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet bipolar analog integrated circuit m m m m pc2798gr if down convertor ic for digital catv document no. p11998ej3v0ds00 (3rd edition) date published october 1999 n cp(k) printed in japan ? 1996, 1999 description the m pc2798gr is a silicon monolithic ic designed for use as qam if down convertor for digital catv. this ic consists of agc amplifier, mixer, oscillator, and video amplifier. the package is 20 pins ssop suitable for high-density surface mount. features ? low distortion agc amplifier iip 3 = - 9 dbm ? on chip if convertor fin = 30 to 250 mhz ? on chip video amplifier vout = 3.0 v p-p (differential, @ r l = 1k w ) ? supply voltage: 5 v ? packaged in 20 pins ssop suitable for high-density surface mount. ordering information part number package package style m pc2798gr-e1 20 pins plastic ssop (225 mil) embossed tape 12 mm wide. 2.5 k/reel. pin 1 indicates pull-out direction of tape * : for evaluation sample order, please contact your local nec office. (part number for sample order: m pc2798gr) please refer to quality grade on nec semiconductor devices (document number c11531e) published by nec corporation to know the specification of quality grade on the devices and its recommended applications. caution electro-static sensitive device the information in this document is subject to change without notice. before using this document, please confirm that this is the latest version. not all devices/types available in every country. please check with local nec representative for availability and additional information. the mark shows major revised points.
data sheet p11998ej3v0ds00 2 m m m m pc2798gr internal block diagram and pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 agc in1 agc in2 v agc v cc 1 osc out gnd osc b2 osc c1 osc c2 osc b1 gnd mix out2 mix out1 g1a g1b ina inb v cc 2 out1 out2 agc amp mixer osc buffer amp osc out buffer amp osc video amp
data sheet p11998ej3v0ds00 3 m m m m pc2798gr pin explanations pin no. symbol pin voltage (v, typ.) explanation equivalent circuit 1 agc in1 1.5 input pin of if signal. 1pin is same phase and 2pin is opposite phase at balance input. in case of single input, 1pin or 2pin should be grounded through capacitor. 2 agc in2 1.5 3v agc 0 to 5 automatic gain control pin. this pins bias govern the agc output level. minimum gain at v agc = 0 v maximum gain at v agc = 5 v recommend to use by deviding agc voltage with externally resistor (ex. 100 k w ). 4 vcc1 5.0 power supply pin of if down convertor block. must be connected bypass capacitor to minimize ground impedance. 5osc out 4.0 output pin of oscillator frequency. connected to pll symthesizer ics input pin. 6 gnd 0.0 ground pin. must be connected to the system gr ound with minimum inductance. ground pattern on the board should be formed as wide as possible. 7 osc b2 2.4 8osc c1 4.6 9osc c2 4.6 10 osc b1 2.4 internal oscillator consist in balance amplifier. 7 and 8pins, 9 and 10 pins should be externally connected to oscillate with active feedback loop. connected lc resonator between 7pin and 10pin. 1 4 2 agc control reg 3 4 agc control 4 5 reg 10 9 4 8 7 reg reg
data sheet p11998ej3v0ds00 4 m m m m pc2798gr 18 19 4 reg pin explanations pin no. symbol pin voltage (v, typ.) ( ) is value at vcc2 = 9 v. explanation equivalent circuit 11 out2 2.5 (4.7) output pin of video amplifier. in case of r l = 1 k w , differential output voltage equal 3 v p-p . out1 and ina are same phase. out2 and inb are same phase. 11 out1 2.5 (4.7) 13 vcc2 5 to 9 power supply pin of video amplifier. must be connected bypass capacitor to minimize ground impedance. 14 inb 2.5 (4.1) signal input pin of video amplifier. this pin is high impedance. 15 ina 2.5 (4.1) 16 g1b 1.7 (3.3) gain control pin of video amplifier. maximum gain at g1a-gib = short. minimum gain at g1a-g1b = open. gain is able to adjust by inserting arbitrary resistor between 16pin and 17pin. 17 g1a 1.7 (3.3) 18 mix out1 3.7 output pin of mixer. this output pin features low-impedance because of its emitter-follower output port. 19 mix out2 3.7 20 gnd 0.0 ground pin. must be connected to the system gr ound with minimum inductance. ground pattern on the board should be formed as wide as possible. 17 15 13 14 16 reg 12 11 13 reg
data sheet p11998ej3v0ds00 5 m m m m pc2798gr absolute maximum ratings (t a = 25 c unless otherwise specified) parameter symbol rating unit test conditions supply voltage 1 vcc1 6.0 v mixer block supply voltage 2 vcc2 6.0 v video amp block power dissipation p d 430 mw t a = 85 c *1 operating ambient temperature t a - 40 to +85 c storage temperature t stg - 55 to +150 c parameter symbol rating unit test conditions supply voltage 1 vcc1 6.0 v mixer block supply voltage 2 vcc2 11.0 v video amp block power dissipation p d 500 mw t a = 75 c *1 operating ambient temperature t a - 40 to +75 c storage temperature t stg - 55 to +150 c *1. mounted on 50 50 1.6 mm double copper epoxy glass board. recommended operating range parameter symbol min. typ. max. unit supply voltage 1 vcc1 4.5 5.0 5.5 v supply voltage 2 vcc2 4.5 5.0 10.0 v operating ambient temperature 1 *2 t a 1 - 40 +25 +85 c operating ambient temperature 2 *3 t a 2 - 40 +25 +75 c *2. @vcc1 = vcc2 = 4.5 to 5.5 v *3. @vcc1 = 4.5 to 5.5 v, vcc2 = 4.5 to 10.0 v electrical characteristics (t a = 25 c) parameter symbol min. typ. max. unit test conditions total block (r l = 1 k w , by measurement circuit 5) circuit current 1 icc1 24.0 35.5 45.0 ma no input signal, vcc1 = vcc2 = 5 v maximum conversion gain 1 cg max 1 68.0 74.0 76.0 db v agc = 4.0 v, g1a-g1b pins: short *4 maximum conversion gain 2 cg max 2 ? 58.0 ? db v agc = 4.0 v, g1a-g1b pins: open *4 minimum conversion gain 1 cg min 1 32.0 39.0 43.0 db v agc = 1.0 v, g1a-g1b pins: short *4 minimum conversion gain 2 cg min 2 ? 22.0 ? db v agc = 1.0 v, g1a-g1b pins: open *4 circuit current 2 icc1 32.0 47.0 60.0 ma no input signal, vcc1 = 5 v, vcc2 = 9 v maximum conversion gain 3 cg max 3 72.0 78.5 81.0 db v agc = 4.0 v, g1a-g1b pins: short *4 maximum conversion gain 4 cg max 4 ? 59.0 ? db v agc = 4.0 v, g1a-g1b pins: open *4 minimum conversion gain 3 cg min 3 ? 43.5 ? db v agc = 1.0 v, g1a-g1b pins: short *4 minimum conversion gain 4 cg min 4 ? 22.5 ? db v agc = 1.0 v, g1a-g1b pins: open *4
data sheet p11998ej3v0ds00 6 m m m m pc2798gr electrical characteristics (t a = 25 c) parameter symbol min. typ. max. unit test conditions agc amplifier + mixer block (@vcc1 = 5 v, r l = 50 w , by measurement circuit 1) circuit current 3 icc3 15.0 23.0 28.0 ma no input signal rf input frequency range f rf 30 ? 250 mhz osc frequency range f osc 30 ? 250 mhz if output frequency range f if dc ? 150 mhz minimum conversion gain 5 cg max 5 ? 25 ? db v agc = 4.0 v *4 minimum conversion gain 5 cg min 5 ?- 7 ? db v agc = 1.0 v *4 agc dynamic range gcr 26 32 ? db v agc = 1.0 to 4.0 v noise figure nf ? 9 ? db ssb, v agc = 4.0 v (@maximum gain) *4, 5 agc voltage high level v agc h4.0 ?? v @maximum gain agc voltage low level v agc l ?? 1.0 v @minimum gain video amp. block (@vcc2 = 5 v, r l = 1 k w , input: 51 w terminated, by measurement circuit 3) circuit current 4 icc4 9.0 12.5 17.0 ma no input signal differential gain 1 g1 ? 200 ? v/v g1a-g1b pins: short, vout = 3.0 v p-p , fin = 10 mhz differential gain 2 g2 ? 26.0 ? v/v g1a-g1b pins: open, vout = 3.0 v p-p , fin = 10 mhz video amp. block (@vcc2 = 9 v, r l = 1 k w , input: 51 w terminated, by measurement circuit 3) circuit current 5 icc5 17.0 24.0 32.0 ma no input signal differential gain 3 g3 ? 385 ? v/v g1a-g1b pins: short, vout = 3.0 v p-p , fin = 10 mhz differential gain 4 g4 ? 28.5 ? v/v g1a-g1b pins: open, vout = 3.0 v p-p , fin = 10 mhz video amp. block (@vcc2 = 5 v or 9 v: common, r l = 1 k w , input: 51 w terminated, by measurement circuit 3) output voltage v out ? 3.0 ? v p-p r l = 1 k w , differential bandwidth 1 bw g1 ? 50 ? mhz g1 (g1a-g1b pins: short) bandwidth 2 bw g2 ? 50 ? mhz g2 (g1a-g1b pins: open) input resistance 1 rin1 ? 3.5 ? k w g1 (g1a-g1b pins: short) input resistance 2 rin2 ? 9.7 ? k w g2 (g1a-g1b pins: open) input capacitance cin ? 1.6 ? pf *4 .f rf = 45 mhz, f osc = 55 mhz, p osc = - 10 dbm *5 . by measurement circuit 2
data sheet p11998ej3v0ds00 7 m m m m pc2798gr standard characteristics (t a = 25 c) parameter symbol value for reference unit test conditions agc amplifier + mixer block (@vcc1 = 5 v, by measurement circuit 1) agc input intercept point 1 agc iip 3 1 - 9dbm v agc = 1.0 v @minimum gain *6 video amp. block (r l = 50 w , input: 51 w terminated, by measurement circuit 4) single-end gain 1 a vs 1 40.0 db v cc 2 = 5 v, g1a-g1b pins: short single-end gain 2 a vs 2 22.5 db v cc 2 = 5 v, g1a-g1b pins: open single-end gain 3 a vs 3 45.0 db v cc 2 = 9 v, g1a-g1b pins: short single-end gain 4 a vs 4 23.5 db v cc 2 = 9 v, g1a-g1b pins: open input intercept point 2 iip 3 2 - 11.5 dbm v cc 2 = 5 v, g1a-g1b pins: open fin1 = 9 mhz, fin2 = 11 mhz input intercept point 3 iip 3 3 - 5.0 dbm v cc 2 = 9 v, g1a-g1b pins: open fin1 = 9 mhz, fin2 = 11 mhz video amp. block (@vcc2 = 5 v or 9 v: common, by measurement circuit 3) common mode rejection ratio cmrr 80 db v cm = 1 v p-p , f = 100 khz power supply rejection ratio psrr 70 db rise time t r 2.6 ns propagation delay time t pd 4.4 ns total block (r l = 1 k w , by measurement circuit 5) input intercept point 4 iip 3 4 - 14.0 dbm v cc 1 = v cc 2 = 5 v, v agc = 1 v, g1a-g1b pins: short *6 input intercept point 5 iip 3 5 - 8.0 dbm v cc 1 = v cc 2 = 5 v, v agc = 1 v, g1a-g1b pins: open *6 input intercept point 6 iip 3 6 - 7.5 dbm v cc 1 = 5 v, v cc 2 = 9 v, v agc = 1 v, g1a-g1b pins: open *6 *6 f rf 1 = 44 mhz, f rf 2 = 46 mhz, f osc = 55 mhz, p osc = - 10 dbm
data sheet p11998ej3v0ds00 8 m m m m pc2798gr typical characteristics (by measurement circuit 5, t a = 25 c, f osc = f rf + 10 mhz, p osc = - - - - 10 dbm) 80 60 40 20 0 conversion gain vs. input frequency conversion gain vs. input frequency conversion gain vs. input frequency conversion gain vs. input frequency cg - conversion gain - db f rf - input freqency - mhz cg - conversion gain - db f rf - input frequency - mhz cg - conversion gain - db f rf - input frequency - mhz cg - conversion gain - db f rf - input frequency - mhz 0 50 100 150 200 250 v cc 1 = 5 v v cc 2 = 5 v 1 k w load g1a?1b: short 80 60 40 20 0 0 50 100 150 200 250 v cc 1 = 5 v v cc 2 = 9 v 1 k w load g1a?1b: short v agc = 4 v v agc = 3 v v agc = 1 v 80 60 40 20 0 0 50 100 150 200 250 v agc = 4 v v agc = 3 v v agc = 1 v v cc 1 = 5 v, v cc 2 = 5 v g1a?1b: open 1 k w load 80 60 40 20 0 0 50 100 150 200 250 v agc = 4 v v agc = 3 v v agc = 1 v v cc 1 = 5 v, v cc 2 = 9 v g1a?1b: open 1 k w load v agc = 4 v v agc = 3 v v agc = 1 v
data sheet p11998ej3v0ds00 9 m m m m pc2798gr typical characteristics (by measurement circuit 5, t a = 25 c, f rf = 45 mhz, p osc = - - - - 10 dbm) 80 60 40 20 0 conversion gain vs. intermediate frequency conversion gain vs. intermediate frequency conversion gain vs. intermediate frequency conversion gain vs. intermediate frequency cg - conversion gain - db f if - intermediate frequency - mhz cg - conversion gain - db f if - intermediate frequency - mhz cg - conversion gain - db f if - intermediate frequency - mhz cg - conversion gain - db f if - intermediate frequency - mhz 0 40 80 120 160 v agc = 4 v v agc = 3 v v agc = 1 v v cc 1 = 5 v, v cc 2 = 5 v g1a?1b: short 1 k w load 80 60 40 20 0 0 40 80 120 160 v agc = 4 v v agc = 3 v 80 60 40 20 0 0 40 80 120 160 v agc = 4 v v agc = 3 v 80 60 40 20 0 0 40 80 120 160 v agc = 4 v v agc = 3 v v agc = 1 v v cc 1 = 5 v, v cc 2 = 9 v g1a?1b: short 1 k w load v cc 1 = 5 v, v cc 2 = 5 v g1a?1b: open 1 k w load v cc 1 = 5 v, v cc 2 = 9 v g1a?1b: open 1 k w load
data sheet p11998ej3v0ds00 10 m m m m pc2798gr typical characteristics (by measurement circuit 1, t a = 25 c) 50 40 30 20 10 0 024681012 circuit current vs. supply voltage no input signal v agc = 0 v total mixer + agc + vco video amp v cc - supply voltage - v i cc - circuit current - ma 30 20 10 0 ?0 ?0 ?0 0 50 100 150 200 250 300 conversion gain vs. input frequency conversion gain vs. intermediate frequency f rf - input frequency - mhz cg - conversion gain - db f osc = f rf + 10 mh z p osc = ?0 dbm v cc 1 = 5 v v agc = 4.0 v v agc = 2.6 v v agc = 0.0 v 30 20 10 0 ?0 ?0 ?0 0 30 60 90 120 150 180 0 1 2 3 4 5 conversion gain vs. agc voltage noise figure vs. agc voltage f if - intermediate frequency - mhz v agc - agc voltage - v 012345 v agc - agc voltage - v cg - conversion gain - db cg - conversion gain - db nf - noise figure - db f rf = 45 mh z f osc = 55 to 210 mh z p osc = ?0 dbm v cc 1 = 5 v v agc = 4.0 v v agc = 2.6 v v agc = 0.0 v 30 20 10 0 v cc 1 = 5 v f rf = 100 mh z f osc = 120 mh z p osc = ?0 dbm dsb mode 30 20 10 0 ?0 v cc 1 = 5 v f rf = 45 mh z p rf = ?0 dbm f osc = 50 mh z p osc = ?0 dbm output power vs. input power ?0 ?0 ?0 ?0 ?0 ?0 0 pin - input power - dbm p out - output power - dbm ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 v cc 1 = 5 v v agc = 0 v f rf 1 = 44 mh z f rf 2 = 46 mh z f osc = 55 mh z p osc = ?0 dbm
data sheet p11998ej3v0ds00 11 m m m m pc2798gr standard characteristics (by measurement circuit 3, t a = 25 c) 400 300 200 100 0 g1a?1b: short p out = 1.5 v p? const. 0 20406080100 differential gain vs. input frequency fin - input frequency - mhz g video - differential gain - v/v 0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 0 output power vs. input power pin - input power (50 w ) - dbm v cc 2 = 9 v v cc 2 = 5 v pout - output power (50 w /1 k w ) - dbm 40 30 20 10 0 g1a?1b: open p out = 1.5 v p? const. 0 20406080100 fin - input frequency - mhz g video - differential gain - v/v fin = 10 mhz g1a?1b: short 500 400 300 200 100 0 short 30 43 56 100 246 2000 open differential gain vs. external resistance resistance - w v cc 2 = 9 v v cc 2 = 5 v g video - differential gain - v/v 0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 10 10 0 pin - input power (50 w ) - dbm v cc 2 = 9 v v cc 2 = 5 v pout - output power (50 w /1 k w ) - dbm fin = 10 mhz g1a?1b: open fin =10 mhz v cc 2 = 9 v v cc 2 = 5 v v cc 2 = 9 v v cc 2 = 5 v differential gain vs. input frequency output power vs. input power
data sheet p11998ej3v0ds00 12 m m m m pc2798gr standard characteristics (by measurement circuit 4, t a = 25 c) gain vs. input frequency input frequency fin - mhz 50 40 30 20 10 0 0.1 1 10 100 v cc 2 = 5 v g1a?1b: short gain vs. input frequency input frequency fin - mhz 50 40 30 20 10 0 0.1 1 10 100 v cc 2 = 5 v g1a?1b: open gain vs. input frequency a vs - gain - db input frequency fin - mhz 50 40 30 20 10 0 0.1 1 10 100 v cc 2 = 9 v g1a?1b: short output power vs. input power pin - input power (50 w )/tone - dbm pout - output power (50 w )/tone - dbm 20 0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 v cc 2 = 5 v f 1 = 9 mhz f 2 = 11 mhz g1a?1b: open gain vs. input frequency a vs - gain - db a vs - gain - db a vs - gain - db input frequency fin - mhz 50 40 30 20 10 0 0.1 1 10 100 v cc 2 = 9 v g1a?1b: open output power vs. input power pin - input power (50 w )/tone - dbm pout - output power (50 w )/tone - dbm 20 0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 v cc 2 = 9 v f 1 = 9 mhz f 2 = 11 mhz g1a?1b: open
data sheet p11998ej3v0ds00 13 m m m m pc2798gr standard characteristics (by measurement circuit 5) 0 ?0 ?0 ?0 ?0 v cc 1 = 5 v v cc 2 = 5 v f 1 = 44 mhz f 2 = 46 mhz f osc = 55 mhz p osc = ?0 dbm g1a?1b: open ?0 ?0 ?0 ?0 ?0 0 output power vs. input power pout - output power (50 w /1 k w )/tone - dbm pout - power pout (50 w /1 k w )/tone - dbm 0 ?0 ?0 ?0 ?0 v cc 1 = 5 v v cc 2 = 5 v f 1 = 44 mhz f 2 = 46 mhz f osc = 55 mhz p osc = ?0 dbm g1a?1b: short ?0 ?0 ?0 ?0 ?0 0 output power vs. input power pin - input power (50 w )/tone - dbm pout - output power (50 w /1 k w )/tone - dbm 0 ?0 ?0 ?0 ?0 v cc 1 = 5 v v cc 2 = 9 v f 1 = 44 mhz f 2 = 46 mhz f osc = 55 mhz p osc = ?0 dbm g1a?1b: open ?0 ?0 ?0 ?0 ?0 0 output power vs. input power pin - input power (50 w )/tone - dbm pin - input power (50 w )/tone - dbm
data sheet p11998ej3v0ds00 14 m m m m pc2798gr standard characteristics (by application circuit example: mixer block, t a = 25 c) 12345 conversion gain vs. agc voltage f rf = 50 mhz f if = 10 mhz p rf = ?0 dbm v cc 1 = 4.5 v v cc 1 = 5.0 v v cc 1 = 5.5 v 30 25 20 30 40 50 60 conversion gain vs. input frequency f rf - input frequency - mhz v cc 1 = 5.5 v v cc 1 = 5.0 v v cc 1 = 4.5 v cg - conversion gain - db f rf = 50 mhz f if = 10 mhz p rf = ?0 dbm v agc = 4 v 30 20 10 0 012345 noise figure vs. agc voltage v agc - agc voltage - v nf - noise figure - db f rf = 50 mhz f if = 10 mhz v cc 1 = 4.5 v v cc 1 = 5.0 v v cc 1 = 5.5 v dsb 30 20 10 0 ?0 0 v agc - agc voltage - v cg - conversion gain - db 5101520 oscillator frequency vs. tuning voltage 70 60 50 40 30 0 vtu - tuning voltage - v f osc - oscillator frequency - mhz ?0 ?0 ?0 ?0 ?0 0 10 output power vs. input power ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?00 ?0 pin - input power - dbm pout - output power - dbm v cc 1 = 5 v f rf 1 = 45 mhz f rf 2 = 46 mhz f osc = 55 mhz v agc = 0 v v cc 1 = 5 v
data sheet p11998ej3v0ds00 15 m m m m pc2798gr measurement circuit 1 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 agc amp mixer osc buffer amp osc out buffer amp osc video amp 10 nf 10 nf mix out 10 nf 220 nf 220 nf 1 nf 10 nf 10 nf 10 nf 10 nf 100 k 100 k in osc in v agc v cc 1 osc out 50 w measurement circuit 2 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 agc amp mixer osc buffer amp osc out buffer amp osc video amp 10 nf 10 nf 220 nf 220 nf 1 nf 10 nf 10 nf 10 nf 10 nf 100 k 100 k v agc v cc 1 sg1 (50 w ) noise source bpf 50 w bpf nf meter 10 nf 50 w
data sheet p11998ej3v0ds00 16 m m m m pc2798gr measurement circuit 3


▲Up To Search▲   

 
Price & Availability of UPC2798GR-E1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X