![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
atf-331m4 low noise pseudomorphic hemt in a miniature leadless package data sheet description avago technologies? atf-331m4 is a high linearity, low noise phemt housed in a miniature leadless package. the atf-331m4? small size and low profile makes it ideal for the design of hybrid modules and other space-constraint devices. based on its featured performance, atf-331m4 is ideal for the first or second stage of base station lna due to the excellent combination of low noise figure and enhanced linearity [1] . the device is also suitable for applications in wireless lan, wll/rll, mmds, and other systems requiring super low noise figure with good intercept in the 450 mhz to 10 ghz frequency range. note: 1. from the same phemt fet family, the smaller geometry atf-34143 may also be considered for the higher gain performance, particularly in the higher frequency band (1.8 ghz and up). features ? low noise figure ? excellent uniformity in product specifications ? 1600 micron gate width ? miniature leadless package 1.4 mm x 1.2 mm x 0.7 mm ? tape-and-reel packaging option available specifications 2 ghz; 4 v, 60 ma (typ.) ? 0.6 db noise figure ? 15 db associated gain ? 19 dbm output power at 1 db gain compression ? 31 dbm output 3 rd order intercept applications ? tower mounted amplifier, low noise amplifier and driver amplifier for gsm/tdma/cdma base stations ? lna for wlan, wll/rll, mmds and wireless data infrastructures ? general purpose discrete phemt for other ultra low noise applications minipak 1.4 mm x 1.2 mm package pin connections and package marking note: top view. package marking provides orientation, product identification and date code. p = device type code x = date code character. a different character is assigned for each month and year. px source pin 3 gate pin 2 source pin 1 drain pin 4 px
2 atf-331m4 absolute maximum ratings [1] absolute symbol parameter units maximum v ds drain-source voltage [2] v 5.5 v gs gate-source voltage [2] v-5 v gd gate drain voltage [2] v-5 i ds drain current [2] ma i diss [3] p diss total power dissipation [4] mw 400 p in max. rf input power dbm 20 t ch channel temperature [5] c 160 t stg storage temperature c -65 to 160 jc thermal resistance [6] c/w 200 notes: 1. operation of this device above any one of these parameters may cause permanent damage. 2. assumes dc quiescent conditions. 3. v gs = 0 v 4. source lead temperature is 25 c. derate 5 mw/ c for t l > 40 c. 5. please refer to failure rates in reliability data sheet to assess the reliability impact of running devices above a channel temperature of 140 c. 6. thermal resistance measured using 150 c liquid crystal measurement method. product consistency distribution charts [8, 9] v ds (v) figure 1. typical pulsed i-v curves [7] . (v gs = -0.2 v per step) i ds (ma) 02 468 500 400 300 200 100 0 -0.6 v 0 v +0.6 v nf (dbm) figure 2. nf @ 2 ghz, 4 v, 60 ma. lsl = 28.5, nominal = 0.6, usl = 0.8. 0.2 0.4 0.5 0.6 0.7 0.3 0.8 0.9 100 80 60 40 20 0 -3 std +3 std cpk = 1.05 stdev = 0.07 oip3 (dbm) figure 3. oip3 @ 2 ghz, 4 v, 60 ma. lsl = 28.5, nominal = 31.0, usl = 36.0 28 32 30 34 36 -3 std +3 std 150 120 90 60 30 0 cpk = 1.00 stdev = 1.07 gain (db) figure 4. gain @ 2 ghz, 4 v, 60 ma. lsl = 13.5, nominal = 15.0, usl = 16.5 13 15 14 16 17 -3 std +3 std 120 100 80 60 40 20 0 cpk = 4.37 stdev = 1.11 notes: 8. distribution data sample size is 349 samples from 4 different wafers. future wafers allocated to this product may have nomina l values anywhere within the upper and lower spec limits. 9. measurements made on production test board. this circuit represents a trade-off between an optimal noise match and a realizea ble match based on production test requirements. circuit losses have been de-embedded from actual measurements. note: 7. under large signal conditions, v gs may swing positive and the drain current may exceed i dss . these conditions are acceptable as long as the maximum p diss and p in max ratings are not exceeded. 3 atf-331m4 dc electrical specifications t a = 25 c, rf parameters measured in a test circuit for a typical device symbol parameter and test condition units min. typ. [2] max. idss [1] saturated drain current vds = 1.5 v, vgs = 0v ma 175 237 305 vp [1] pinch-off voltage vds = 1.5 v, ids = 10% of idss v -0.65 -0.5 -0.35 id quiescent bias current vgs = -0.51 v, vds = 4v ma 60 gm [1] transconductance vds = 1.5 v, gm = idss/vp mmho 360 440 igdo gate to drain leakage current vgd = -5 v a 1000 igss gate leakage current vgd = vgs = -4v a 42 600 nf noise figure f = 2 ghz vds = 4 v, ids = 60 ma db 0.6 0.8 f = 900 mhz vds = 4 v, ids = 60 ma db 0.5 ga associated gain f = 2 ghz vds = 4 v, ids = 60 ma db 13.5 15 16.5 f = 900 mhz vds = 4 v, ids = 60 ma db 21 oip3 output 3 rd order f = 2 ghz, 5 dbm pout/tone vds = 4 v, ids = 60 ma dbm 28.5 31 intercept point [3] f = 900 mhz, 5 dbm pout/tone vds = 4 v, ids = 60 ma dbm 30.8 p1db 1db compressed f = 2 ghz vds = 4 v, ids = 60 ma dbm 19 output power [3] f = 900 mhz vds = 4 v, ids = 60 ma dbm 18 notes: 1. guaranteed at wafer probe level 2. typical values are determined from a sample size of 349 parts from 4 wafers. 3. measurements obtained using production test board described in figure 5. input 50 ? input transmission line including gate bias t (0.3 db loss) input matching circuit _mag = 0.13 _ang = 113 (0.3 db loss) 50 ? output transmission line including gate bias t (0.5 db loss) dut output figure 5. block diagram of 2 ghz production test board used for noise figure, associated gain, p1db, and oip3 measurements. th is circuit represents a trade-off between an optimal noise match and a realizable match based on production test requirements. circuit los ses have been de-embedded from actual measurements. 4 atf-331m4 typical performance curves notes: 1. measurements made on fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4v 60 ma bias. this circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. circuit losses have been de-embedded from actual measurements. 2. quiescent drain current, idsq, is set with zero rf drive applied. as p1db is approached, the drain current may increase or decrease depending on frequency and dc bias point. at lower values of idsq the device is running closer to class b as power output approaches p1db. this results in higher p1db and higher pae (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. figure 8. p1db vs. bias [1,2] 2 ghz. i dsq (ma) p1db (dbm) 0 100 40 20 80 60 2v 3v 4v 25 20 15 10 5 0 figure 10. nf & gain vs. bias [1] at 2 ghz. i d (ma) gain (db) noise figure (db) 0 100 40 20 80 60 2v 3v 4v 16 15 14 13 12 11 10 1.4 1.2 1.0 0.8 0.6 0.4 0.2 figure 6. oip3, iip3 & bias [1] at 2 ghz. i ds (ma) oip3, iip3 (dbm) 0 100 40 20 80 60 2v 3v 4v 40 30 20 10 0 figure 7. oip3, iip3 & bias [1] at 900 mhz. i ds (ma) oip3, iip3 (dbm) 0 100 40 20 80 60 2v 3v 4v 40 30 20 10 0 figure 9. p1db vs. bias [1] 900 mhz. i dsq (ma) p1db (dbm) 0 100 40 20 80 60 2v 3v 4v 25 20 15 10 5 0 figure 11. nf & gain vs. bias [1] at 900 mhz. i d (ma) gain (db) noise figure (db) 0 120 40 20 80 100 60 2v 3v 4v 22 21 20 19 18 17 16 1.4 1.2 1.0 0.8 0.6 0.4 0.2 5 notes: 1. measurements made on fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4v 60 ma bias. this circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. circuit losses have been de-embedded from actual measurements. 2. quiescent drain current, idsq, is set with zero rf drive applied. as p1db is approached, the drain current may increase or decrease depending on frequency and dc bias point. at lower values of idsq the device is running closer to class b as power output approaches p1db. this results in higher p1db and higher pae (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. atf-331m4 typical performance curves , continued figure 12. fmin vs. frequency at 4 v, 60 ma. frequency (ghz) fmin (db) 010 4 28 6 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 figure 14. fmin & ga vs. frequency and temp. vd = 4 v , ids = 60 ma. frequency (ghz) gain (db) noise figure (db) 08 4 26 85 c 25 c -40 c 25 20 15 10 5 2.0 1.5 1.0 0.5 0 figure 15. p1db, oip3 vs. frequency and temp at vd = 4 v , ids = 60 ma. frequency (ghz) p1db, oip3 (dbm) 08 45 7 2 13 6 85 c 25 c -40 c 35 30 25 20 15 10 5 0 figure 16. oip3, p1db, nf and gain vs. bias [1,2] at 3.9 ghz. i dsq (ma) oip3, p1db (dbm), gain (db) noise fiugre (db) 0 100 40 20 80 60 p1db oip3 gain nf 35 30 25 20 15 10 5 0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 figure 13. associated gain vs. frequency at 4 v , 60 ma. frequency (ghz) gain (db) 010 4 28 6 30 25 20 15 10 5 0 figure 17. oip3, p1db, nf at 5.8 ghz. i dsq (ma) oip3, p1db (dbm), gain (db) noise figure (db) 0 100 40 20 80 60 p1db oip3 gain nf 35 30 25 20 15 10 5 0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 6 atf-331m4 typical scattering parameters, v ds = 2v, i ds = 40 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.82 -91.90 22.10 12.74 127.90 -27.13 0.044 53.30 0.40 -163.10 24.62 0.8 0.79 -119.10 18.85 8.76 112.80 -25.19 0.055 46.70 0.47 -169.67 22.02 1.0 0.78 -132.10 18.06 8.00 106.00 -24.44 0.060 44.70 0.49 -173.83 21.25 1.5 0.76 -151.40 14.75 5.46 93.73 -22.73 0.073 42.73 0.53 177.77 18.74 1.8 0.75 -159.60 13.55 4.76 88.20 -21.72 0.082 42.13 0.53 173.73 17.64 2.0 0.74 -163.60 13.36 4.65 85.00 -21.31 0.086 41.93 0.54 171.27 17.33 2.5 0.72 -170.70 10.33 3.29 77.97 -20.09 0.099 41.33 0.53 165.20 15.21 3.0 0.69 -174.30 9.60 3.02 71.83 -18.12 0.124 40.57 0.55 162.60 13.86 4.0 0.71 163.10 6.62 2.14 53.23 -17.20 0.138 30.30 0.56 138.03 10.77 5.0 0.73 150.00 4.98 1.77 41.60 -16.65 0.147 24.97 0.56 134.30 9.25 6.0 0.71 140.90 3.94 1.57 28.80 -16.08 0.157 17.23 0.57 115.73 7.71 7.0 0.73 123.90 2.92 1.40 14.70 -15.39 0.170 7.10 0.57 109.93 6.97 8.0 0.74 112.90 2.77 1.38 6.70 -15.04 0.177 2.57 0.58 108.90 6.98 9.0 0.76 97.70 2.60 1.35 -4.77 -14.99 0.178 -6.27 0.59 93.03 6.78 10.0 0.79 83.60 2.00 1.26 -18.20 -14.75 0.183 -17.47 0.59 78.30 6.54 11.0 0.86 61.90 0.08 1.01 -32.50 -14.80 0.182 -29.77 0.58 66.00 6.03 12.0 0.87 62.10 -0.71 0.92 -37.90 -14.33 0.192 -33.90 0.65 59.73 5.63 13.0 0.88 51.90 -1.54 0.84 -49.90 -14.89 0.180 -44.67 0.69 49.07 5.20 14.0 0.88 44.60 -2.09 0.79 -58.90 -15.44 0.169 -52.47 0.73 40.13 5.04 15.0 0.91 38.70 -4.00 0.63 -67.70 -15.81 0.162 -60.63 0.75 30.57 4.34 16.0 0.93 33.30 -5.66 0.52 -74.80 -18.71 0.116 -67.27 0.78 24.73 4.04 17.0 0.93 28.40 -5.68 0.52 -80.50 -17.86 0.128 -73.07 0.79 18.67 4.02 18.0 0.92 25.20 -6.58 0.47 -84.00 -17.99 0.126 -77.40 0.81 13.87 3.03 freq f min opt opt r n/50 g a ghz db mag. ang. db 0.50 0.37 0.39 0.6 0.07 21.16 0.90 0.41 0.381 26.3 0.06 18.36 1.00 0.41 0.38 32.9 0.06 18.19 1.50 0.46 0.38 63.6 0.05 15.96 1.80 0.48 0.385 80 0.05 15.43 2.00 0.5 0.39 90.1 0.05 14.56 2.50 0.54 0.407 112.8 0.04 13.29 3.00 0.59 0.431 132 0.04 12.18 4.00 0.67 0.492 161.3 0.03 10.4 5.00 0.76 0.565 -179 0.02 8.94 6.00 0.85 0.638 -166 0.02 7.96 7.00 0.93 0.702 -156.9 0.04 7 8.00 1.02 0.747 -148.9 0.07 6.16 9.00 1.11 0.762 -139 0.11 5.8 10.00 1.19 0.737 -124.5 0.18 4.89 notes: 1. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test syst em. from these measurements fmin is calculated. refer to the noise parameter measurement section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. the input referen ce plane is at the end of the gate pad. the output reference plane is at the end of the drain pad. typical noise parameters, v ds = 2v, i ds = 40 ma figure 18. msg/mag and |s 21 | 2 vs. frequency at 2 v , 40 ma. msg mag frequency (ghz) msg/mag and |s 21 | 2 (db) 020 10 515 40 30 20 10 0 -10 |s 21 | 2 7 freq f min opt opt r n/50 g a ghz db mag. ang. db 0.50 0.37 0.377 0.7 0.07 21.42 0.90 0.41 0.367 24.5 0.06 18.53 1.00 0.42 0.366 31.1 0.06 18.28 1.50 0.46 0.365 61.6 0.05 15.95 1.80 0.49 0.37 77.8 0.05 15.42 2.00 0.51 0.374 87.9 0.05 14.61 2.50 0.55 0.392 110.5 0.04 13.33 3.00 0.59 0.416 129.6 0.04 12.25 4.00 0.68 0.479 159.2 0.03 10.5 5.00 0.77 0.553 179.4 0.02 9.06 6.00 0.86 0.627 -167.2 0.02 8.05 7.00 0.95 0.69 -157.6 0.04 7.13 8.00 1.04 0.733 -149.2 0.06 6.38 9.00 1.13 0.742 -139.1 0.1 5.97 10.00 1.22 0.709 -124.7 0.18 5 notes: 1. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test syst em. from these measurements fmin is calculated. refer to the noise parameter measurement section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. the input referen ce plane is at the end of the gate pad. the output reference plane is at the end of the drain pad. typical noise parameters, v ds = 3v, i ds = 40 ma figure 19. msg/mag and |s 21 | 2 vs. frequency at 3 v , 40 ma. msg mag frequency (ghz) msg/mag and |s 21 | 2 (db) 020 10 515 40 30 20 10 0 -10 |s 21 | 2 atf-331m4 typical scattering parameters, v ds = 3v, i ds = 40 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.82 -90.50 22.45 13.27 128.40 -27.54 0.042 53.80 0.38 -155.50 24.99 0.8 0.78 -117.70 19.31 9.24 113.30 -25.35 0.054 47.10 0.44 -165.77 22.33 1.0 0.77 -130.90 18.50 8.41 106.40 -24.58 0.059 45.10 0.46 -170.63 21.54 1.5 0.75 -150.40 15.23 5.77 93.93 -22.97 0.071 43.03 0.49 180.17 19.10 1.8 0.74 -158.70 14.02 5.02 88.30 -21.94 0.080 42.33 0.49 -184.17 17.98 2.0 0.74 -162.70 13.79 4.89 85.10 -21.51 0.084 42.13 0.50 173.27 17.65 2.5 0.72 -170.00 10.81 3.47 77.97 -20.18 0.098 41.53 0.50 166.80 15.49 3.0 0.69 -174.10 9.60 3.02 71.63 -18.24 0.122 40.67 0.52 163.70 13.92 4.0 0.71 163.70 7.13 2.27 53.03 -17.33 0.136 30.70 0.52 139.43 11.20 5.0 0.73 150.50 5.46 1.87 41.40 -16.83 0.144 25.67 0.52 136.10 9.63 6.0 0.71 141.50 4.37 1.65 28.50 -16.31 0.153 18.13 0.54 118.23 8.02 7.0 0.73 124.40 3.34 1.47 14.10 -15.55 0.167 8.10 0.54 111.83 7.28 8.0 0.74 113.40 3.14 1.44 6.00 -15.19 0.174 3.57 0.54 110.90 7.28 9.0 0.76 98.20 2.94 1.40 -5.57 -15.14 0.175 -4.97 0.55 95.33 7.05 10.0 0.79 84.10 2.33 1.31 -19.10 -14.94 0.179 -16.07 0.55 80.50 6.83 11.0 0.86 62.40 0.44 1.05 -33.40 -14.94 0.179 -28.27 0.55 67.80 6.40 12.0 0.87 62.50 -0.38 0.96 -38.90 -14.47 0.189 -32.20 0.61 61.73 6.00 13.0 0.88 52.30 -1.20 0.87 -50.90 -14.99 0.178 -42.87 0.66 50.97 5.55 14.0 0.89 44.90 -1.79 0.81 -60.20 -15.55 0.167 -50.87 0.70 41.63 5.33 15.0 0.91 39.00 -3.64 0.66 -69.10 -15.81 0.162 -59.03 0.73 32.17 4.81 16.0 0.93 33.40 -5.30 0.54 -76.40 -18.64 0.117 -65.67 0.76 26.13 4.49 17.0 0.93 28.50 -5.40 0.54 -82.40 -17.79 0.129 -71.87 0.78 19.77 4.48 18.0 0.92 25.10 -6.34 0.48 -86.10 -17.92 0.127 -76.40 0.80 14.87 3.39 8 freq f min opt opt r n/50 g a ghz db mag. ang. db 0.50 0.36 0.35 0.2 0.06 21.97 0.90 0.4 0.341 24.3 0.06 18.96 1.00 0.41 0.34 31.1 0.05 18.77 1.50 0.45 0.341 62.5 0.04 16.31 1.80 0.48 0.346 79.3 0.05 15.79 2.00 0.5 0.351 89.6 0.05 14.93 2.50 0.54 0.37 112.8 0.04 13.67 3.00 0.59 0.395 132.4 0.04 12.62 4.00 0.68 0.461 162.3 0.03 10.78 5.00 0.77 0.538 -177.6 0.02 9.28 6.00 0.86 0.616 -164.4 0.02 8.34 7.00 0.95 0.683 -155.3 0.04 7.37 8.00 1.04 0.729 -147.2 0.07 6.63 9.00 1.13 0.742 -137.3 0.11 6.19 10.00 1.22 0.712 -122.6 0.19 5.23 notes: 1. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test syst em. from these measurements fmin is calculated. refer to the noise parameter measurement section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. the input referen ce plane is at the end of the gate pad. the output reference plane is at the end of the drain pad. typical noise parameters, v ds = 3v, i ds = 60 ma figure 20. msg/mag and |s 21 | 2 vs. frequency at 3 v , 60 ma. msg mag frequency (ghz) msg/mag and |s 21 | 2 (db) 020 10 515 40 30 20 10 0 -10 |s 21 | 2 atf-331m4 typical scattering parameters, v ds = 3v, i ds = 60 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.81 -93.60 22.93 14.01 127.00 -28.64 0.037 54.00 0.39 -167.20 25.78 0.8 0.78 -120.70 19.68 9.64 112.10 -26.56 0.047 48.30 0.46 -172.07 23.12 1.0 0.77 -133.60 18.81 8.72 105.40 -25.68 0.052 46.80 0.48 -175.73 22.24 1.5 0.75 -152.50 15.50 5.96 93.43 -23.88 0.064 46.03 0.51 176.57 19.69 1.8 0.74 -160.50 14.27 5.17 88.00 -22.73 0.073 45.93 0.51 172.73 18.50 2.0 0.74 -164.40 14.02 5.02 84.80 -22.16 0.078 46.03 0.52 170.47 18.09 2.5 0.72 -171.30 11.06 3.57 77.97 -20.72 0.092 45.93 0.52 164.60 15.89 3.0 0.70 -175.30 9.80 3.09 71.93 -18.40 0.120 45.37 0.53 161.90 14.10 4.0 0.71 162.70 7.39 2.34 53.33 -17.52 0.133 35.20 0.54 137.43 11.21 5.0 0.73 149.70 5.70 1.93 41.90 -16.95 0.142 29.87 0.54 134.20 9.70 6.0 0.71 140.60 4.61 1.70 29.10 -16.31 0.153 21.73 0.55 116.23 8.18 7.0 0.73 123.70 3.54 1.50 15.10 -15.55 0.167 11.40 0.56 110.13 7.39 8.0 0.74 112.70 3.33 1.47 7.10 -15.09 0.176 6.37 0.56 109.10 7.35 9.0 0.76 97.60 3.12 1.43 -4.37 -15.04 0.177 -2.77 0.57 93.43 7.16 10.0 0.79 83.40 2.52 1.34 -17.80 -14.75 0.183 -14.27 0.57 78.70 6.95 11.0 0.86 61.80 0.66 1.08 -32.10 -14.80 0.182 -26.87 0.57 66.20 6.68 12.0 0.87 62.00 -0.15 0.98 -37.60 -14.29 0.193 -31.00 0.63 60.03 6.21 13.0 0.88 52.00 -0.96 0.90 -49.50 -14.80 0.182 -41.97 0.68 49.47 5.74 14.0 0.89 44.50 -1.56 0.84 -58.70 -15.34 0.171 -50.27 0.71 40.23 5.55 15.0 0.92 38.80 -3.38 0.68 -67.60 -15.65 0.165 -58.43 0.74 30.87 5.16 16.0 0.94 33.20 -5.04 0.56 -74.90 -18.42 0.120 -65.47 0.77 25.03 4.92 17.0 0.94 28.20 -5.15 0.55 -80.90 -17.65 0.131 -71.67 0.78 18.87 4.96 18.0 0.93 24.60 -6.11 0.50 -84.90 -17.79 0.129 -76.30 0.80 14.17 3.76 9 freq f min opt opt r n/50 g a ghz db mag. ang. db 0.50 0.4 0.335 0.5 0.07 21.8 0.90 0.43 0.332 27.9 0.06 18.83 1.00 0.44 0.332 34.3 0.06 18.59 1.50 0.48 0.338 63.8 0.05 16.22 1.80 0.51 0.345 79.6 0.05 15.46 2.00 0.52 0.352 89.3 0.05 14.61 2.50 0.57 0.373 111.3 0.05 13.34 3.00 0.61 0.4 130 0.04 12.29 4.00 0.69 0.467 158.9 0.03 10.47 5.00 0.78 0.542 178.7 0.03 8.96 6.00 0.86 0.617 -167.8 0.02 8.05 7.00 0.95 0.68 -158.1 0.04 7.19 8.00 1.03 0.724 -149.3 0.06 6.41 9.00 1.12 0.738 -138.9 0.1 6.15 10.00 1.2 0.712 -124.2 0.18 5.07 notes: 1. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test syst em. from these measurements fmin is calculated. refer to the noise parameter measurement section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. the input referen ce plane is at the end of the gate pad. the output reference plane is at the end of the drain pad. typical noise parameters, v ds = 4v, i ds = 40 ma figure 21. msg/mag and |s 21 | 2 vs. frequency at 4 v , 40 ma. msg mag frequency (ghz) msg/mag and |s 21 | 2 (db) 020 10 515 40 30 20 10 0 -10 |s 21 | 2 atf-331m4 typical scattering parameters, v ds = 4v, i ds = 40 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.82 -89.80 22.59 13.48 128.80 -27.54 0.042 54.00 0.36 -149.40 25.06 0.8 0.78 -116.90 19.49 9.43 113.60 -25.51 0.053 47.30 0.41 -162.57 22.50 1.0 0.77 -130.00 18.68 8.59 106.60 -24.73 0.058 45.20 0.43 -167.93 21.70 1.5 0.75 -149.70 15.42 5.90 94.13 -22.97 0.071 42.93 0.46 -177.83 19.20 1.8 0.74 -158.00 14.21 5.13 88.40 -22.05 0.079 42.23 0.46 177.53 18.13 2.0 0.74 -162.20 13.70 4.84 85.10 -21.51 0.084 41.93 0.47 174.77 17.61 2.5 0.72 -169.50 11.50 3.76 77.87 -20.26 0.097 41.33 0.48 168.10 15.88 3.0 0.69 -173.80 10.20 3.24 71.53 -18.20 0.123 40.47 0.49 164.80 14.20 4.0 0.70 164.10 7.34 2.33 52.63 -17.46 0.134 30.50 0.50 140.63 11.39 5.0 0.73 150.90 5.66 1.92 40.90 -16.95 0.142 25.67 0.50 137.60 9.81 6.0 0.71 141.80 4.54 1.69 28.00 -16.42 0.151 18.43 0.51 120.43 8.14 7.0 0.73 124.70 3.52 1.50 13.40 -15.65 0.165 8.40 0.52 113.63 7.45 8.0 0.74 113.70 3.29 1.46 5.20 -15.29 0.172 4.07 0.52 112.80 7.42 9.0 0.76 98.50 3.08 1.43 -6.37 -15.29 0.172 -4.27 0.53 97.33 7.18 10.0 0.79 84.30 2.45 1.33 -20.00 -15.04 0.177 -15.27 0.53 82.40 6.94 11.0 0.86 62.60 0.59 1.07 -34.50 -15.04 0.177 -27.37 0.53 69.40 6.64 12.0 0.87 62.70 -0.26 0.97 -40.00 -14.56 0.187 -31.00 0.59 63.63 6.29 13.0 0.88 52.60 -1.08 0.88 -52.10 -15.09 0.176 -41.67 0.64 52.57 5.80 14.0 0.89 45.10 -1.66 0.83 -61.60 -15.55 0.167 -49.77 0.69 43.13 5.59 15.0 0.92 39.20 -3.49 0.67 -70.50 -15.81 0.162 -58.03 0.71 33.47 5.35 16.0 0.94 33.50 -5.16 0.55 -78.00 -18.64 0.117 -64.67 0.75 27.23 4.93 17.0 0.94 28.40 -5.30 0.54 -84.20 -17.72 0.130 -71.07 0.77 20.77 4.97 18.0 0.93 24.90 -6.29 0.49 -88.30 -17.86 0.128 -75.90 0.79 15.87 3.70 10 notes: 1. the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test syst em. from these measurements fmin is calculated. refer to the noise parameter measurement section for more information. 2. s and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. the input referen ce plane is at the end of the gate pad. the output reference plane is at the end of the drain pad. atf-331m4 typical scattering parameters, v ds = 4v, i ds = 60 ma freq. s 11 s 21 s 12 s 22 msg/mag ghz mag. ang. db mag. ang. db mag. ang. mag. ang. db 0.5 0.81 -93.00 23.11 14.30 127.30 -28.64 0.037 53.90 0.37 -161.30 25.87 0.8 0.78 -120.00 19.90 9.89 112.40 -26.56 0.047 48.30 0.43 -169.07 23.23 1.0 0.77 -133.00 19.03 8.94 105.60 -25.68 0.052 46.80 0.45 -173.33 22.35 1.5 0.75 -152.00 15.74 6.12 93.43 -23.88 0.064 45.83 0.48 178.37 19.81 1.8 0.74 -160.00 14.50 5.31 87.90 -22.85 0.072 45.73 0.48 174.33 18.68 2.0 0.74 -164.00 14.24 5.15 84.80 -22.27 0.077 45.83 0.49 171.87 18.25 2.5 0.72 -171.00 11.29 3.67 77.77 -20.82 0.091 45.73 0.49 165.90 16.06 3.0 0.69 -175.00 10.21 3.24 71.63 -19.25 0.109 45.27 0.51 162.80 14.73 4.0 0.71 163.00 7.64 2.41 52.93 -17.65 0.131 35.20 0.51 138.63 11.41 5.0 0.73 150.00 5.93 1.98 41.40 -17.08 0.140 30.07 0.51 135.70 9.89 6.0 0.71 141.00 4.81 1.74 28.60 -16.48 0.150 22.23 0.52 118.43 8.31 7.0 0.73 124.00 3.75 1.54 14.30 -15.65 0.165 11.90 0.53 111.93 7.56 8.0 0.74 113.00 3.52 1.50 6.20 -15.24 0.173 7.07 0.53 111.10 7.52 9.0 0.76 97.90 3.29 1.46 -5.37 -15.14 0.175 -1.87 0.54 95.43 7.31 10.0 0.79 83.70 2.67 1.36 -18.90 -14.89 0.180 -13.17 0.54 80.60 7.10 11.0 0.86 62.10 0.83 1.10 -33.30 -14.89 0.180 -25.67 0.54 67.90 6.92 12.0 0.87 62.30 0.00 1.00 -38.80 -14.42 0.190 -29.70 0.60 61.93 6.50 13.0 0.88 52.20 -0.82 0.91 -50.80 -14.89 0.180 -40.67 0.65 51.07 5.93 14.0 0.89 44.70 -1.41 0.85 -60.10 -15.39 0.170 -48.97 0.69 41.93 5.76 15.0 0.92 39.00 -3.22 0.69 -69.20 -15.65 0.165 -57.33 0.72 32.27 5.53 16.0 0.94 33.30 -4.88 0.57 -76.60 -18.42 0.120 -64.27 0.75 26.33 5.19 17.0 0.94 28.20 -5.04 0.56 -82.80 -17.59 0.132 -70.77 0.77 19.97 5.22 18.0 0.93 24.70 -6.02 0.50 -86.90 -17.72 0.130 -75.60 0.79 15.07 3.90 freq f min opt opt r n/50 g a ghz db mag. ang. db 0.50 0.38 0.316 0.7 0.06 22.33 0.90 0.42 0.314 28.9 0.06 19.23 1.00 0.43 0.314 35.5 0.06 19.1 1.50 0.47 0.321 65.7 0.05 16.63 1.80 0.5 0.329 81.9 0.05 15.86 2.00 0.52 0.336 91.9 0.05 14.96 2.50 0.56 0.358 114.3 0.04 13.73 3.00 0.61 0.386 133.2 0.04 12.58 4.00 0.7 0.454 162.3 0.03 10.78 5.00 0.79 0.53 -178.1 0.03 9.3 6.00 0.88 0.606 -165.1 0.02 8.32 7.00 0.97 0.67 -155.8 0.04 7.44 8.00 1.06 0.714 -147.4 0.07 6.59 9.00 1.16 0.728 -137.1 0.11 6.36 10.00 1.25 0.703 -121.9 0.19 5.27 typical noise parameters, v ds = 4v, i ds = 60 ma figure 22. msg/mag and |s 21 | 2 vs. frequency at 4 v , 60 ma. msg mag frequency (ghz) msg/mag and |s 21 | 2 (db) 020 10 515 40 30 20 10 0 -10 |s 21 | 2 11 s and noise parameter measurements the position of the reference planes used for the measurement of both s and noise parameter mea- surements is shown in figure 23. the reference plane can be described as being at the center of both the gate and drain pads. s and noise parameters are measured with a 50 ohm microstrip test fixture made with a 0.010" thickness aluminum substrate. both source pads are connected directly to ground via a 0.010" thickness metal rib which provides a very low inductance path to ground for both source pads. the inductance associated with the addition of printed circuit board plated through holes and source bypass capacitors must be added to the computer circuit simulation to properly model the effect of grounding the source leads in a typical amplifier design. gate pin 2 source pin 3 drain pin 4 source pin 1 reference plane microstrip transmission lines px figure 23. position of the reference planes. noise parameter applications information the fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an atn np5 test system. from these measurements, a true fmin is calculated. fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50 ? , to an impedance represented by the reflection coef- ficient o . the designer must design a matching network that will present o to the device with mini- mal associated circuit losses. the noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. the noise figure of the device is equal to fmin only when the device is presented with o . if the reflection coefficient of the matching network is other than o , then the noise figure of the device will be greater than fmin based on the follow- ing equation. nf = f min + 4 r n | s ? o | 2 zo (|1 + o | 2 )(1 - | s | 2 ) where rn/zo is the normalized noise resistance, o is the optimum reflection coefficient required to pro- duce fmin and s is the reflection coefficient of the source impedance actually presented to the device. the losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. the losses of the matching networks are related to the q of the components and associated printed circuit board loss. o is typically fairly low at higher frequencies and increases as frequency is lowered. larger gate width devices will typically have a lower o as compared to narrower gate width devices. typically for fets, the higher o usually infers that an impedance much higher than 50 ? is required for the device to pro- duce fmin. at vhf frequencies and even lower l band frequencies, the required impedance can be in the vicinity of several thousand ohms. matching to such a high impedance requires very hi-q components in order to minimize circuit losses. as an example at 900 mhz, when air wound coils (q>100)are used for matching networks, the loss can still be up to 0.25 db which will add directly to the noise figure of the device. using multilayer molded inductors with qs in the 30 to 50 range results in additional loss over the air wound coil. losses as high as 0.5 db or greater add to the typical 0.15 db fmin of the device creat- ing an amplifier noise figure of nearly 0.65 db. 12 atf-331m4 minipak model nfet=yes pfet=no vto=0.95 beta=0.48 lambda=0.09 alpha=4 b=0.8 tnom=27 idstc= vbi=0.7 tau= betatce= delta1=0.2 delta2= gscap=3 cgs=1.764 pf gdcap=3 cgd=0.338 pf rgd= tqm= vmax= fc= rd=0.125 rg=1 rs=0.0625 ld=0.0034 nh lg=0.0039 nh ls=0.0012 nh cds=0.0776 pf crf=0.1 rc=62.5 gsfwd=1 gsrev=0 gdfwd=1 gdrev=0 vjr=1 is=1 na ir=1 na imax=0.1 xti= n= eg= vbr= vtotc= rin= taumdl=no fnc=1 e6 r=0.17 c=0.2 p=0.65 wvgfwd= wbvgs= wbvgd= wbvds= wldsmax= wpmax= allparams= advanced_curtice2_model mesfetm1 gate source inside package port g num=1 c c1 c=0.28 pf port s1 num=2 source drain port s2 num=4 port d num=3 l l6 l=0.147 nh r=0.001 c c2 c=0.046 pf l l7 l=0.234 nh r=0.001 msub tlinp tl3 z=z2 ohm l=23.6 mil k=k a=0.000 f=1 ghz tand=0.001 tlinp tl9 z=z2 ohm l=11 mil k=k a=0.000 f=1 ghz tand=0.001 var var1 k=5 z2=85 z1=30 var egn tlinp tl1 z=z2/2 ohm l=22 mil k=k a=0.000 f=1 ghz tand=0.001 tlinp tl2 z=z2/2 ohm l=20 0 mil k=k a=0.000 f=1 ghz tand=0.001 tlinp tl7 z=z2/2 ohm l=5.2 mil k=k a=0.000 f=1 ghz tand=0.001 tlinp tl5 z=z2 ohm l=27.5 mil k=k a=0.000 f=1 ghz tand=0.001 l l1 l=0.234 nh r=0.001 l l4 l=0.281 nh r=0.001 gaasfet fet1 mode1=mesfetm1 mode=nonlinear msub msub2 h=25.0 mil er=9.6 mur=1 cond=1.0e+50 hu=3.9e+034 mil t=0.15 mil tand=0 rough=0 mil atf-331m4 die model this model can be used as a design tool. it has been tested on ads for various specifications. however, for more precise and accurate design, please refer to the measured data in this data sheet. for future improvements, avago reserves the right to change these models without prior notice. 13 minipak package outline drawing ordering information part number no. of devices container atf-331m4-tr1 3000 7 reel ATF-331M4-TR2 10000 13 reel atf-331m4-blk 100 antistatic bag 1.44 (0.058) 1.40 (0.056) top view side view dimensions are in millimeteres (inches) bottom view 1.20 (0.048) 1.16 (0.046) 0.70 (0.028) 0.58 (0.023) 1.12 (0.045) 1.08 (0.043) 3 2 4 1 0.82 (0.033) 0.78 (0.031) 0.32 (0.013) 0.28 (0.011) -0.07 (-0.003) -0.03 (-0.001) 0.00 -0.07 (-0.003) -0.03 (-0.001) 0.42 (0.017) 0.38 (0.015) 0.92 (0.037) 0.88 (0.035) 1.32 (0.053) 1.28 (0.051) 0.00 px solder pad dimensions user feed direction cover tape carrier tape reel end view 8 mm 4 mm top view note: px represents package marking code. device orientation is indicated by package marking. px px px px device orientation for outline 4t, minipak 1412 tape dimensions p p 0 p 2 f w c d 1 d e a 0 5 max. t 1 (carrier tape thickness) t t (cover tape thickness) 5 max. b 0 k 0 description symbol size (mm) size (inches) length width depth pitch bottom hole diameter a 0 b 0 k 0 p d 1 1.40 0.05 1.63 0.05 0.80 0.05 4.00 0.10 0.80 0.05 0.055 0.002 0.064 0.002 0.031 0.002 0.157 0.004 0.031 0.002 cavity diameter pitch position d p 0 e 1.50 0.10 4.00 0.10 1.75 0.10 0.060 0.004 0.157 0.004 0.069 0.004 perforation width thickness w t 1 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 - 0.004 0.010 0.0008 carrier tape cavity to perforation (width direction) cavity to perforation (length direction) f p 2 3.50 0.05 2.00 0.05 0.138 0.002 0.079 0.002 distance width tape thickness c t t 5.40 0.10 0.062 0.001 0.213 0.004 0.0024 0.00004 cover tape a 0 b 0 for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies, pte. in the united states and other countries. data subject to change. copyright ? 2006 avago technologies pte. all rights reserved. obsoletes 5988-4993en 5989-4216en may 9, 2006 |
Price & Availability of ATF-331M4-TR2
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |