![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
warp2 series igbt with ultrafast soft recovery diode IRGB20B60PD1 1 www.irf.com 12/10/03 features ? npt technology, positive temperature coefficient ? lower v ce (sat) ? lower parasitic capacitances ? minimal tail current ? hexfred ultra fast soft-recovery co-pack diode ? tighter distribution of parameters ? higher reliability benefits ? parallel operation for higher current applications ? lower conduction losses and switching losses ? higher switching frequency up to 150khz to-220ab g c e e g n-channel c v ces = 600v v ce(on) typ. = 2.05v @ v ge = 15v i c = 13.0a equivalent mosfet parameters r ce(on) typ. = 158m ? i d (fet equivalent) = 20a applications ? telecom and server smps ? pfc and zvs smps circuits ? uninterruptable power supplies ? consumer electronics power supplies smps igbt absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 40 i c @ t c = 100c continuous collector current 22 i cm pulse collector current (ref. fig. c.t.4) 80 i lm clamped inductive load current 80 a i f @ t c = 25c diode continous forward current 10 i f @ t c = 100c diode continous forward current 4 i frm maximum repetitive forward current 16 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 215 w p d @ t c = 100c maximum power dissipation 86 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) thermal resistance parameter min. typ. max. units r jc (igbt) thermal resistance junction-to-case-(each igbt) ??? ??? 0.58 c/w r jc (diode) thermal resistance junction-to-case-(each diode) ??? ??? 5.0 r cs thermal resistance, case-to-sink (flat, greased surface) ??? 0.50 ??? r ja thermal resistance, junction-to-ambient (typical socket mount) ??? ??? 80 weight ??? 2 (0.07) ??? g (oz) IRGB20B60PD1 2 www.irf.com notes: r ce(on) typ. = equivalent on-resistance = v ce(on) typ. / i c , where v ce(on) typ. = 2.05v and i c = 13a. i d (fet equivalent) is the equivalent mosfet i d rating @ 25c for applications up to 150khz. these are provided for comparison purposes (only) with equivalent mosfet solutions. v cc = 80% (v ces ), v ge = 15v, l = 28h, r g = 22 ?. pulse width limited by max. junction temperature. energy losses include "tail" and diode reverse recovery. data generated with use of diode 8eth06. c oes eff. is a fixed capacitance that gives the same charging time as c oes while v ce is rising from 0 to 80% v ces . c oes eff.(er) is a fixed capacitance that stores the same energy as c oes while v ce is rising from 0 to 80% v ces . electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions ref.fig v (br)ces collector-to-emitter breakdown voltage 600??v v ge = 0v, i c = 500a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ?0.32?v/c v ge = 0v, i c = 1ma (25c-125c) r g internal gate resistance ? 4.3 ? ? 1mhz, open collector ?2.052.35 i c = 13a, v ge = 15v 4, 5,6,8,9 v ce(on) collector-to-emitter saturation voltage ? 2.50 2.80 v i c = 20a, v ge = 15v ?2.653.00 i c = 13a, v ge = 15v, t j = 125c ?3.303.70 i c = 20a, v ge = 15v, t j = 125c v ge(th) gate threshold voltage 3.0 4.0 5.0 v i c = 250a 7,8,9 ? v ge(th) / ? tj threshold voltage temp. coefficient ? -11 ? mv/c v ce = v ge , i c = 1.0ma gfe forward transconductance ? 19 ? s v ce = 50v, i c = 40a, pw = 80s i ces collector-to-emitter leakage current ? 1.0 250 a v ge = 0v, v ce = 600v ?0.1?ma v ge = 0v, v ce = 600v, t j = 125c v fm diode forward voltage drop ? 1.5 1.8 v i f = 4.0a, v ge = 0v 10 ?1.41.7 i f = 4.0a, v ge = 0v, t j = 125c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v, v ce = 0v switching characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units ref.fig qg total gate charge (turn-on) ? 68 102 i c = 13a 17 q gc gate-to-collector charge (turn-on) ? 24 36 nc v cc = 400v ct1 q ge gate-to-emitter charge (turn-on) ? 10 15 v ge = 15v e on turn-on switching loss ? 95 140 i c = 13a, v cc = 390v ct3 e off turn-off switching loss ? 100 145 j v ge = +15v, r g = 10 ? , l = 200h e total total switching loss ? 195 285 t j = 25c t d(on) turn-on delay time ? 20 26 i c = 13a, v cc = 390v ct3 t r rise time ? 5.0 7.0 ns v ge = +15v, r g = 10 ? , l = 200h t d(off) turn-off delay time ? 115 135 t j = 25c t f fall time ? 6.0 8.0 e on turn-on switching loss ? 165 215 i c = 13a, v cc = 390v ct3 e off turn-off switching loss ? 150 195 j v ge = +15v, r g = 10 ? , l = 200h 11,13 e total total switching loss ? 315 410 t j = 125c wf1,wf2 t d(on) turn-on delay time ? 19 25 i c = 13a, v cc = 390v ct3 t r rise time ? 6.0 8.0 ns v ge = +15v, r g = 10 ? , l = 200h 12,14 t d(off) turn-off delay time ? 125 140 t j = 125c wf1,wf2 t f fall time ? 13 17 c ies input capacitance ? 1560 ? v ge = 0v 16 c oes output capacitance ? 95 ? v cc = 30v c res reverse transfer capacitance ? 20 ? pf f = 1mhz c oes eff. effective output capacitance (time related) ?83? v ge = 0v, v ce = 0v to 480v 15 c oes eff. (er) effective output capacitance (ener gy related) ?61? t j = 150c, i c = 80a 3 rbsoa reverse bias safe operating area full square v cc = 480v, vp =600v ct2 rg = 22 ? , v ge = +15v to 0v t rr diode reverse recovery time ? 28 42 ns t j = 25c i f = 4.0a, v r = 200v, 19 ?3857 t j = 125c di/dt = 200a/s q rr diode reverse recovery charge ? 40 60 nc t j = 25c i f = 4.0a, v r = 200v, 21 ?70105 t j = 125c di/dt = 200a/s i rr peak reverse recovery current ? 2.9 5.2 a t j = 25c i f = 4.0a, v r = 200v, 19,20,21,22 ?3.76.7 t j = 125c di/dt = 200a/s ct5 conditions IRGB20B60PD1 www.irf.com 3 fig. 1 - maximum dc collector current vs. case temperature fig. 2 - power dissipation vs. case temperature fig. 3 - reverse bias soa t j = 150c; v ge =15v fig. 4 - typ. igbt output characteristics t j = -40c; tp = 80s fig. 5 - typ. igbt output characteristics t j = 25c; tp = 80s fig. 6 - typ. igbt output characteristics t j = 125c; tp = 80s 0 20 40 60 80 100 120 140 160 t c (c) 0 50 100 150 200 250 p t o t ( w ) 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 15v vge = 12v vge = 10v vge = 8.0v vge = 6.0v 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 15v vge = 12v vge = 10v vge = 8.0v vge = 6.0v 0123456 v ce (v) 0 5 10 15 20 25 30 35 40 i c e ( a ) v ge = 18v vge = 15v vge = 12v vge = 10v vge = 8.0v 0 20 40 60 80 100 120 140 160 t c (c) 0 5 10 15 20 25 30 35 40 45 i c ( a ) 10 100 1000 v ce (v) 0 1 10 100 i c a ) IRGB20B60PD1 4 www.irf.com fig. 8 - typical v ce vs. v ge t j = 25c fig. 9 - typical v ce vs. v ge t j = 125c fig. 12 - typ. switching time vs. i c t j = 125c; l = 200h; v ce = 390v, r g = 10 ? ; v ge = 15v. diode clamp used: 8eth06 (see c.t.3) fig. 11 - typ. energy loss vs. i c t j = 125c; l = 200h; v ce = 390v, r g = 10 ? ; v ge = 15v. diode clamp used: 8eth06 (see c.t.3) fig. 10 - typ. diode forward characteristics tp = 80s 0 5 10 15 20 v ge (v) 0 50 100 150 200 250 300 350 400 450 i c e ( a ) t j = 25c t j = 125c fig. 7 - typ. transfer characteristics v ce = 50v; tp = 10s 0 5 10 15 20 v ge (v) 0 1 2 3 4 5 6 7 8 9 10 v c e ( v ) i ce = 20a i ce = 13a i ce = 8.0a 0 5 10 15 20 v ge (v) 0 1 2 3 4 5 6 7 8 9 10 v c e ( v ) i ce = 20a i ce = 13a i ce = 8.0a 0 5 10 15 20 25 i c (a) 0 50 100 150 200 250 300 350 e n e r g y ( j ) e off e on 0 5 10 15 20 25 i c (a) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 fm forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j IRGB20B60PD1 www.irf.com 5 fig. 14 - typ. switching time vs. r g t j = 125c; l = 200h; v ce = 390v, i ce = 13a; v ge = 15v diode clamp used: 8eth06 (see c.t.3) fig. 13 - typ. energy loss vs. r g t j = 125c; l = 200h; v ce = 390v, i ce = 13a; v ge = 15v diode clamp used: 8eth06 (see c.t.3) fig. 16 - typ. capacitance vs. v ce v ge = 0v; f = 1mhz fig. 15 - typ. output capacitance stored energy vs. v ce fig. 17 - typical gate charge vs. v ge i ce = 13a 0 5 10 15 20 25 30 35 r g ( ? ) 50 100 150 200 250 e n e r g y ( j ) e on e off 0 10 20 30 40 r g ( ? ) 1 10 100 1000 s w i c h i n g t i m e ( n s ) t r td off t f td on 0 20 40 60 80 100 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 1020304050607080 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 16 v g e ( v ) 400v 0 100 200 300 400 500 600 700 v ce (v) 0 2 4 6 8 10 12 e o e s ( j ) fig. 18 - normalized typical v ce(on) vs. junction temperature i ce = 13a; v ge = 15v -50 0 50 100 150 200 t j , junction temperature (c) 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 n o r m a l i z e d v c e ( o n ) ( v ) IRGB20B60PD1 6 www.irf.com ! " 20 25 30 35 40 45 50 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a f f v = 200v t = 125c t = 25c r j j 0 2 4 6 8 10 12 14 100 1000 f i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j di /dt - (a/s) f f 0 40 80 120 160 200 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f 100 1000 100 1000 f di /dt - (a/s) a i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f IRGB20B60PD1 www.irf.com 7 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig. 24. maximum transient thermal impedance, junction-to-case (diode) ri (c/w) i (sec) 1.779 0.000226 3.223 0.001883 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri fig 23. maximum transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.0076 0.000001 0.2696 0.000270 0.1568 0.001386 0.1462 0.015586 IRGB20B60PD1 8 www.irf.com fig.c.t.1 - gate charge circuit (turn-off) fig.c.t.2 - rbsoa circuit l rg 80 v dut 480v 1k vcc du t 0 l fig.c.t.4 - resistive load circuit rg vcc dut r = v cc i cm fig.c.t.3 - switching loss circuit fig. c.t.5 - reverse recovery parameter test circuit reverse recovery circuit irfp250 d.u.t. l = 70h v = 200v r 0.01 ? g d s dif/dt adjust pfc diode l rg vcc dut / driver IRGB20B60PD1 www.irf.com 9 fig. wf1 - typ. turn-off loss waveform @ t j = 125c using fig. ct.3 fig. wf2 - typ. turn-on loss waveform @ t j = 125c using fig. ct.3 fig. wf3 - reverse recovery waveform and definitions -50 0 50 100 150 200 250 300 350 400 450 -0.20 0.00 0.20 0.40 0.60 0.80 time(s) v ce (v) -2 0 2 4 6 8 10 12 14 16 18 i ce (a) 90% i ce 5% v ce 5% i ce eoff loss tf -50 0 50 100 150 200 250 300 350 400 450 7.75 7.85 7.95 8.05 8.15 time (s) v ce (v) -5 0 5 10 15 20 25 30 35 40 45 i ce (a) test current 90% test current 5% v ce 10% test current eon loss tr t a t b t rr q rr i f i rrm i rrm 0.5 di(rec)m/dt 0.75 i rrm 5 4 3 2 0 1 di /dt f ! " # $$ $ %" $ & & $ &# $$ ' ( $$ )* )) + ( # IRGB20B60PD1 10 www.irf.com ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/03 data and specifications subject to change without notice. this product has been designed and qualified for industrial market. qualification standards can be found on ir?s web site. to-220ab package is not recommended for surface mount application. |