Part Number Hot Search : 
2SK27 DN8797SE FA13844P MPW2033 FA13844P T2955 D2058 MPW2033
Product Description
Full Text Search
 

To Download APA2051QBI-TRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . 2.4w stereo audio power amplifier (with gain setting) & capfree headphone driver a p a 2 0 5 1 f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s note book pcs lcd monitor o p e r a t i n g v o l t a g e ? h v d d = 3 . 0 ~ 3 . 6 v ? v d d = 4 . 5 ~ 5 . 5 v no output capacitor at headphone amplifier required meeting vista requirement low distortion amp mode ? t h d + n = 5 6 d b , a t v d d = 5 v , r l = 4 w, p o =1.5w ? t h d + n = 6 4 d b , a t v d d = 5 v , r l = 8 w, p o =0.9w hp mode ? t h d + n = 7 3 d b , a t h v d d = 3 . 3 v , r l = 1 6 w p o = 125 mw ? t h d + n = 7 7 d b , a t h v d d = 3 . 3 v , r l = 3 2 w, p o = 88 mw ? t h d + n = 8 5 d b , a t h v d d = 3 . 3 v , r l = 1 0 k w, v o = 1 . 7 vrms o u t p u t p o w e r a t 1 % t h d + n ? 1 . 9 w , a t v d d = 5 v , a m p m o d e , r l = 4 w ? 1 . 2 w , a t v d d = 5 v , a m p m o d e , r l = 8 w a t 1 0 % t h d + n ? 2 . 4 w a t v d d = 5 v , a m p m o d e , r l = 4 w ? 1 . 5 w a t v d d = 5 v , a m p m o d e , r l = 8 w d e p o p c i r c u i t r y i n t e g r a t e d i n t e r n a l 1 9 - s t e p s g a i n s e t t i n g f o r f l e x i b l e a p p l i c a t i o n t h e r m a l s h u t d o w n p r o t e c t i o n a n d o v e r - c u r r e n t p r o t e c t i o n c i r c u i t r y h i g h s u p p l y v o l t a g e r i p p l e r e j e c t i o n s u r f a c e - m o u n t p a c k a g i n g ? t q f n 4 x 4 - 2 8 ( w i t h e n h a n c e d t h e r m a l p a d ) l e a d f r e e a n d g r e e n d e v i c e s a v a i l a b l e ( r o h s c o m p l i a n t ) s i m p l i f i e d a p p l i c a t i o n c i r c u i t audio codec stereo speakers stereo headphone the apa2051 is a monolithic integrated circuit, which combines a stereo power amplifier and a stereo output capacitor-less headphone amplifier. t h e s t e r e o p o w e r a m p l i f i e r p r o v i d e s 1 9 - s t e p s g a i n s e t t i n g f o r f l e x i b l e a p p l i c a t i o n . the headphone amplifier is ground-refer- ence output, and no need the output capacitors for dc blocking. the advantages of eliminating the output ca- pacitor are saving cost, pcb?s space, and component height. both the de-pop circuitry and the thermal shutdown pro- tection circuitry are integrated in the apa2051, which re- duces pops and clicks noise during power on/off and in shutdown mode. thermal shutdown protects the chip from being destroyed by over-temperature failure. to sim- plify the audio system design in notebook computer applications, the apa2051 provides the internal gain setting, and these features can minimize components and pcb area. the apa2051 is available in tqfn4x4-28 package. this package is characterized by space saving and thermal efficiency.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 a p a 2 0 5 1 o r d e r i n g a n d m a r k i n g i n f o r m a t i o n a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) symbol parameter rating unit v dd supply voltage (pvdd, cvdd, vdd) v hv dd, supply voltage (hvdd) - 0.3 to 6 v ss supply voltage (vss) +0.3 to - 6 v v set , v amp_en , v hp_en input voltage 0 to v dd +0.3v t a operating ambient temperature range - 40 to 85 c t j maximum junction temperature 150 c t stg storage temperature range - 65 to +150 c t s dr maximum lead soldering temperature , 10 seconds 260 c p d power dissipation internally limited w ( o v e r o p e r a t i n g f r e e - a i r t e m p e r a t u r e r a n g e u n l e s s o t h e r w i s e n o t e d . ) n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . n o t e 1 : absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. p i n c o n f i g u r a t i o n (tqfn4x4-28) (top view) 2 0 p g n d 1 7 p v d d 1 5 h v d d 1 6 h p _ l 1 8 r o u t - 1 9 r o u t + 2 1 h p _ e n amp_en 24 vdd 25 gnd 26 inr_a 27 inr_h 28 bias 22 set 23 l o u t + 5 p g n d 4 n c 3 i n l _ a 1 l o u t - 6 p v d d 7 i n l _ h 2 10 cgnd 9 cp+ 8 cvdd 11 cp- 12 vss 13 hp_r 14 nc apa2051 apa2051 handling code temperature range package code package code qb : tqfn4x4-28 operating ambient temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device xxxxx - date code assembly material apa2051 qb : apa2051 xxxxx
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 3 a p a 2 0 5 1 r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s symbol parameter range unit v dd supply v oltage 4.5 ~ 5.5 v hv dd supply voltage 3.0 ~ 3.6 v v ih high level threshold voltage amp_en, hp_en 2 ~ v v il low level threshold voltage amp_en, hp_en ~ 0.8 v for amplifier ~ v dd - 1 vicm common mode input voltage for headphone amplifier ~ h v dd - 1 v shutdown ~ 0.8 gain setting 2 ~ 4.2 v v set input voltage fix gain 4.5 ~ v e l e c t r i c a l c h a r a c t e r i s t i c s apa205 1 symbol parameter test condition s min. typ. max. unit v dd supply voltage 4.5 - 5.5 v hv dd headphone amplifier supply voltage 3.0 - 3.6 v i vdd v dd supply current - 17.5 29 i hvdd h vdd sup ply current only speaker mode, amp_en = hp_en = 0v - 0.15 1 i vdd v dd supply current - 12 20 i hvdd h vdd supply current only headphone mode, hp_en = amp_en = 5v - 3 5 i vdd v dd supply current - 20 35 i hvdd h vdd supply current all enable, hp_en=5v and amp_en = 0v - 3 5 ma i sd (hvdd) hv dd shutdown current - 50 90 m a i sd (vdd) v dd shutdown current set = 0v - 1 10 i amp_en input current amp _ en - 1 - m a i hp_en input current hp _ en - 10 15 m a speaker mode thd +n =1%, f in =1 k hz r l =4 w r l =8 w 1.0 1.9 1.2 - p o output power t hd +n =10%, f in =1 k hz r l =4 w r l =8 w 1.3 2.4 1.5 - w v os output offset voltage r l =8 w , gain =10.5db - - 10 mv v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted). t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient ( note 2) tqfn 4x4 - 28 45 o c/w note 2 : 3.42 in 2 printed circuit board with 2oz trace and copper through 10 vias of 15mil diameter vias. the thermal pad on the tqfn4x4- 28 packages with solder on the printed circuit board.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 4 a p a 2 0 5 1 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apa205 1 symbol parameter test conditions min. typ. max. unit speaker mode (cont.) thd+n total harmonic distortion plus noise f in = 1 k hz p o = 1.5w, r l =4 w p o = 0.9w, r l =8 w - 0.15 0.06 - % f in =1khz, c b =2.2 m f, r l =8 w , p o =0.92w - 80 - db crosstalk channel separation f in =1khz, c b =2.2 m f, r l =4 w , p o =1.5w - 83 - psrr power supply rejection ratio c b = 2 .2 m f, r l =8 w , f in =120hz - 70 - db s/n p o =0.8w, r l =8 w , a - weight ing filter - 90 - db vn noise output voltage gain =10.5db, r l =8 w , c b =2. 2 m f - 80 - m v (rms) headphone mode thd +n = 1%, f in =1 k hz r l = 16 w r l = 32 w 100 160 120 - po output power thd +n = 10%, f in =1 k hz r l =16 w r l = 3 2 w 150 200 165 - mw thd+n=10% - 2.9 - vo output voltage s wing r l =10k w thd+n=1% - 2.4 - vrms vos output offset voltage r l =32 w - 10 +10 mv thd+n total harmonic distortion plus noise f in = 1 k hz p o = 125mw, r l =16 w p o = 88mw, r l =32 w v o =1.7vrms, r l =10k w - 0.02 0.02 0.005 - % f in =1khz, r l =16 w , p o = 125 mw - 80 - f in =1khz, r l = 32 w , p o = 88mw - 85 - crosstalk channel separation f in =1khz, r l =10k w , v o = 1.7 vrms - 10 5 - db psrr power supply rejection ratio c b = 2.2 m f , r l =32 w, f in =120hz - 80 - d b s/n w ith a - weight ing filter p o = 70mw, r l =32 w v o = 1. 2vrms, r l =10k w 95 92 - db vn noi se output voltage c b = 2.2 m f - 30 - m v (rms) r f input f eedback resistance 38 40 42 k w charge pump fosc switching frequency 460 540 620 k hz cv ss charge dump (cvss) n o load - - 0.98 v dd - v req charge pump requirement resistance - 9 12 w v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted).
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 5 a p a 2 0 5 1 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apa205 1 symbol parameter test condition s min. typ. max. unit attenuation r l = 32 w , v o = 1.1vrms, f in = 1 k hz - 115 - db att (hp_en) hp disable attenuation r l = 10 k w , v o = 1.1vrms, f in = 1 k hz - 85 - db r l = 8 w , v o = 2vrms, f in = 1 k hz - 112 - db att ( amp_en ) amp disable attenuation r l = 4 w , v o = 2vrms, f in = 1 k hz - 112 - db att_sd (hp_en) shutdown active r l = 10 k w on the headphone mode , v o = 1.1vrms, f in = 1 k hz - 90 - db att _ sd( amp_en ) shutdown active r l = 8 w on the amp mode , v o = 1v rms, f in = 1 k hz - 100 - db headphone to speaker crosstalk amp_en = 0 v , r l = 8 w crosstalk channel separation hp_en = 5v , r l = 16 w , f in = 1 k hz, p o = 125mw - 85 - db speaker to headphone crosstalk hp_en = 5v , r l = 10 k w crosstalk channel separation amp_en = 0 v , r l = 4 w , f in = 1 k hz, p o = 1.5w - 80 - db amplifier start - up time t start - up start - up time - 120 - msec v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted). input voltage (v set ) gain (db) low (v) high (v) hysteresis (mv) recommended voltage (v) - 70 0 2.00 sd 0.00 - 7 2.04 2.12 47 2.08 - 5 2.15 2.24 36 2.20 - 3 2.28 2.35 41 2.31 - 1 2.39 2.47 41 2.43 1 2.51 2.58 35 2.54 3 2.62 2.70 41 2.66 4 2.74 2.81 4 8 2.78 5 2.86 2.92 43 2.89 6 2.97 3.04 47 3.01 7 3.09 3.15 45 3.12 8 3.21 3.27 54 3.24 9 3.33 3.39 59 3.36 10 3.45 3.51 64 3.48 11 3.56 3.62 53 3.59 12 3.68 3.73 59 3.70 13 3.80 3.85 66 3.82 g a i n s e t t i n g t a b l e _ a m p m o d e ( v d d = 5 v )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 6 a p a 2 0 5 1 gain (db) r1 (1%) r# (1%) - 70 10 k 0 - 7 18k 13k - 5 20 k 16k - 3 18k 16k - 1 16k 15k 1 15k 16k 3 13k 15k 4 24k 30k 5 13k 18k 6 13k 20k 7 13k 22k 8 16k 30k 9 13k 27 k 10 1 3 k 30 k 11 15k 39 k 12 13k 39 k 13 13k 43 k 14 13k 50 k 15 1 5k 68 k 16 1 3k 68 k 10.5 10k >90k ( v d d = 5 v ) r e c o m m e n d r e s i s t a n c e ? s v a l u e f o r g a i n s e t t i n g input voltage (v set ) gain (db) low (v) high (v) hysteresis (mv) recommended voltage (v) 14 3.92 3.96 69 3.94 15 4.02 4.07 64 4.05 16 4.15 4.17 76 4.16 10.5 4.26 5.00 94 5.00 g a i n s e t t i n g t a b l e _ a m p m o d e ( c o n t . )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 7 a p a 2 0 5 1 thd+n (%) o u t p u t p o w e r ( w ) o u t p u t p o w e r ( w ) thd+n (%) crosstalk (db) thd+n (%) t h d + n v s . o u t p u t p o w e r f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) f r e q u e n c y ( h z ) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y r e s p o n s e phase (deg) f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s 0.05 10 0.1 1 0 3 0.5 1 1.5 2 2.5 v dd =5v f in =1khz c in =2.2 m f bw<80khz amp mode r l =4 w r l =8 w 0.1 10 1 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f p o =1.5w bw<80khz amp mode right channel left channel 0.1 10 1 0.01 5 0.1 1 2 v dd =5v r l =4 w c in =2.2 m f bw<80khz amp mode f in =20khz f in =20hz f in =1khz -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right to left left to right v dd =5v r l =4 c in =2.2 m f p o =1.5w amp mode w 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f a-weighting amp mode -5 +30 +0 +5 +10 +15 +20 +25 +6 +11 +7 +8 +9 +10 10 200k 100 1k 10k 100k v dd =5v c in =2.2 m f r l =4 w p o =0.2w amp mode gain phase
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 8 a p a 2 0 5 1 thd+n (%) o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) thd+n (%) output noise voltage (vrms) crosstalk (db) t h d + n v s . o u t p u t p o w e r f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y ( h z ) f r e q u e n c y r e s p o n s e crosstalk (db) c r o s s t a l k v s . f r e q u e n c y f r e q u e n c y ( h z ) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f a-weighting amp mode -5 +30 +0 +5 +10 +15 +20 +25 +6 +11 +7 +8 +9 +10 10 200k 100 1k 10k 100k v dd =5v c in =2.2 m f r l =8 w p o =0.13w amp mode gain phase -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4ohm (amp) r l =10k w (hp) c in =2.2 m f (amp) p o =1.5w(amp) amp (active) mode hp mode right(amp) to right(hp) right(amp) to left(hp) left(amp) to left(hp) left(amp) to right(hp) 0.05 10 0.1 1 20 20k 100 1k 10k v dd =5v r l =8 w c i n =2.2 m f p o =0.92w bw<80khz amp mode right channel left channel 0.05 10 0.1 1 0.01 5 0.1 1 v dd =5v r l =8 w c in =2.2 m f bw<80khz amp mode f in =20hz f in =20khz f in =1khz -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =8 c in =2.2 f p o =0.92w amp mode right to left left to right w m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 9 a p a 2 0 5 1 amp attenuation (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) amp attenuation (db) shutdown attenuation (db) shutdown attenuation (db) a m p a t t e n u a t i o n v s . f r e q u e n c y f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) a m p a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e v s . o u t p u t v o l t a g e output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e ( v r m s ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 3.5 0.5 1 1.5 2 2.5 3 0 1.5 0.3 0.6 0.9 1.2 v dd =5v r l =4 w c in =2.2 m f f in =1khz amp mode 0 4 0.5 1 1.5 2 2.5 3 3.5 1.5 0.3 0.6 0.9 1.2 v dd =5v r l =8 w c in =2.2 m f f in =1khz amp mode -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4 w c i n =2.2 m f v o =2vrms(f in =1khz, amp enable ) amp mode (disable) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f v o =2vrms(f in =1khz,amp enable) amp mode (disable) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f v o =1vrms(f in =1khz) shutdown active amp mode -120 -110 -100 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f v o =1vrms(f in =1khz) shutdown active amp mode +0 -90 -80 -70 -60 -50 -40 -30 -20 -10
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 0 a p a 2 0 5 1 thd+n (%) o u t p u t v o l t a g e ( v o l t ) o u t p u t p o w e r ( w ) thd+n (%) thd+n (%) thd+n (%) t h d + n v s . o u t p u t v o l t a g e o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y crosstalk (db) f r e q u e n c y ( h z ) c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.001 10 0.01 0.1 1 3 0.5 1 1.5 2 2.5 0 t t r l =10k w r l =300 w r l =32 w r l =16 w v dd =5v hv d d =3.3v f in =1khz c in =3.3 m f bw<80khz hp mode 0.01 10 0.1 1 1m 300m 10m 100m v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f bw<80khz hp mode f in =20khz f in =20hz f in =1khz 0.01 10 0.1 1 0 250m 50m 100m 150m 200m v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f f in =1khz bw<80khz hp mode stereo, in phase stereo, 180 o out of phase mono -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right to left left to right v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =125mw hp mode 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f a-weighting hp mode right channel left channel 0.005 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =125mw hp mode bw<80khz bw<22khz
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 1 a p a 2 0 5 1 gain(db) f r e q u e n c y ( h z ) o u t p u t p o w e r ( w ) thd+n (%) thd+n (%) thd+n (%) f r e q u e n c y r e s p o n s e o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y crosstalk (db) f r e q u e n c y ( h z ) c r o s s t a l k v s . f r e q u e n c y output noise voltage (v) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y f r e q u e n c y ( h z ) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) +170 +190 +175 +180 +185 -0.2 +0.2 -0.1 -0 +0.1 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =28mw hp mode 0.01 10 0.1 1 1m 200m 10m 100m f in =20khz f in =20hz f in =1khz v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f bw<80khz hp mode 0.001 10 0.01 0.1 1 20 20k 100 1k 10k bw<80khz bw<22khz v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =88mw hp mode 1 m 100 m 10 m 20 20k 100 1k 10k right channel left channel v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f a-weighting hp mode 0.01 10 0.1 1 0 200m 50m 100m 150m v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f f in =1khz bw<80khz hp mode stereo, in phase stereo, 180 o out of phase mono -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =88mw hp mode right to left left to right
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 2 a p a 2 0 5 1 gain (db) f r e q u e n c y ( h z ) o u t p u t v o l t a g e ( v r m s ) thd+n (%) crosstalk (db) thd+n (%) f r e q u e n c y r e s p o n s e f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t v o l t a g e t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) f r e q u e n c y ( h z ) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y r e s p o n s e f r e q u e n c y ( h z ) phase (deg) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) +170 +190 +175 +180 +185 -0.2 +0.2 -0.1 -0 +0.1 10 200k 100 1k 10k 100k v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =13mw hp mode gain phase 0.001 10 0.01 0.1 1 0 3 0.5 1 1.5 2 2.5 f in =20hz f in =20khz f in =1khz v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f bw<80khz hp mode +175 +195 +180 +185 +190 -0.4 +0.4 -0.2 +0 +0.2 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =240mvrms hp mode 0.001 10 0.01 0.1 1 20 20k 100 1k 10k right channel left channel v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k left to right right to left v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f a-weighting hp mode left channel right channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 3 a p a 2 0 5 1 thd+n (%) o u t p u t v o l t a g e ( v o l t ) f r e q u e n c y ( h z ) thd+n (%) output noise voltage (vrms) crosstalk (db) t h d + n v s . o u t p u t v o l t a g e f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y ( h z ) f r e q u e n c y r e s p o n s e crosstalk (db) c r o s s t a l k v s . f r e q u e n c y f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) phase (deg) 0.001 10 0.01 0.1 1 0 3 0.5 1 1.5 2 2.5 f in =20hz f in =20khz f in =1khz v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f bw<80khz hp mode +175 +195 +180 +185 +190 -0.4 +0.4 -0.2 +0 +0.2 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =240mvrms hp mode 0.001 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w (hp) r l =8 w (amp) r in =39k w (hp) c in =3.3 m f (hp) p o =125mw(hp) amp (active) mode hp mode right (hp) to right (amp) left (hp) to right (amp) right (hp) to left (amp) left (hp) to left (amp) 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f a-weighting hp mode right channel left channel -130 +0 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode left to right right to left
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 4 a p a 2 0 5 1 hp attenuation (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) hp attenuation (db) shutdown attenuation (db) shutdown attenuation (db) h p a t t e n u a t i o n v s . f r e q u e n c y f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) h p a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e v s . o u t p u t v o l t a g e output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e ( v r m s ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -140 +0 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w c in =3.3 m f v o =1vrms(f in =1khz) shutdown active hp mode left channel right channel -130 +0 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w c in =3.3 m f v o =1vrms(f in =1khz) shutdown active hp mode left channel right channel 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3 m f f in =1khz hp mode stereo, in phase mono -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w c in =3.3 m f v o =1vrms(f in =1khz hp enable) hp mode (disable) left channel right channel 0 2.5 0.5 1 1.5 2 0 2.5 0.5 1 1.5 2 stereo, in phase mono v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3 m f f in =1khz hp mode -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w c in =3.3 m f v o =1vrms(f in =1khz hp enable) hp mode (disable) right channel left channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 5 a p a 2 0 5 1 output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e ( v r m s ) output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e v s . o u t p u t v o l t a g e p s r r v s . f r e q u e n c y p s r r v s . f r e q u e n c y psrr (db) f r e q u e n c y ( h z ) p s r r v s . f r e q u e n c y psrr (db) p s r r v s . f r e q u e n c y f r e q u e n c y ( h z ) psrr (db) psrr (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 stereo, in phase mono v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3 m f f in =1khz hp mode 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 mono & stereo, in phase v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3 m f f in =1khz hp mode 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f v rr =200mvrms amp mode right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 v rr : ripple voltage on v dd -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k left channel right channel v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f v rr =200mvrms hp mode v rr : ripple voltage on hv dd -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v rr =200mvrms hp mode left channel right channel v rr : ripple voltage on hv dd -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right channel left channel v dd =5v r l =4 w c in =2.2 m f v rr =200mvrms amp mode v rr : ripple voltage on v dd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 6 a p a 2 0 5 1 supply current (ma) s u p p l y v o l t a g e ( v o l t ) s u p p l y v o l t a g e ( v o l t ) shutdown current ( m a) s u p p l y c u r r e n t v s . s u p p l y v o l t a g e s h u t d o w n c u r r e n t v s . s u p p l y v o l t a g e p o w e r d i s s i p a t i o n v s . o u t p u t p o w e r p o w e r d i s s i p a t i o n v s . o u t p u t p o w e r o u t p u t p o w e r v s . l o a d r e s i s t a n c e o u t p u t p o w e r v s . l o a d r e s i s t a n c e & c h a r g e p u m p c a p a c i t a n c e power dissipation (w) power dissipation (mw) o u t p u t p o w e r ( w ) o u t p u t p o w e r ( m w ) output power (mw) output power (mw) l o a d r e s i s t a n c e ( w ) l o a d r e s i s t a n c e ( w ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 v dd =5v thd+n <1% amp mode r l =8 w r l =4 w 10 100 1000 mono, thd+n=10% mono, thd+n=1% v dd =5v hv dd =3.3v f in =1khz bw<80khz hp mode 0 50 100 150 200 250 300 10 20 30 40 50 60 70 80 90 100 v dd =5v f in =1khz bw<80khz hp mode c f =c co =2.2 m f thd+d=1%; mono & stereo, in phase c f =c co =1 m f thd+n=1%; mono c f =c co =1 m f thd+n=1%; stereo, in phase c f :charge pump flying capacitor c co :charge pump output capacitor 0 50 100 150 200 250 300 350 0 0 50 100 150 200 r l =16 w r l =32 w v dd =5v hv dd =3.3v thd+n <1% hp mode 50 100 150 200 250 300 350 400 0 10 20 30 40 50 3.0 3.5 4.0 4.5 5.0 5.5 amp mode hp mode no load i sd(vdd) i sd(hvdd) 2 4 6 8 10 12 14 16 18 20 3.0 3.5 4.0 4.5 5.0 5.5 no load hp mode amp mode * hp mode disable h v d d = 3 . 3 v i hvdd =0.15ma * * amp mode disable v d d = 5 v i vdd =1 2 ma
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 7 a p a 2 0 5 1 input resistance (k w )_amp mode g a i n ( d b ) _ a m p m o d e i n p u t r e s i s t a n c e v s . a m p l i f i e r ' s g a i n t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 15 . 0 17 . 5 20 . 0 22 . 5 25 .0 27 . 5 30 .0 32 . 5 35 .0 37 . 5 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 v dd =5v f in =1 k hz bw<80 k hz no load am p mode
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 8 a p a 2 0 5 1 o p e r a t i n g w a v e f o r m s o u t p u t t r a n s i e n t a t s h u t d o w n r e l e a s e o u t p u t t r a n s i e n t a t t u r n o n amp_out ((out+)-(out-)) v dd hp_out 5v/div 10mv/div 20mv/div sd hp_out amp_out ((out+)-(out-)) 5v/div 10mv/div 20mv/div 2 0 m s / d i v 2 0 m s / d i v o u t p u t t r a n s i e n t a t t u r n o f f o u t p u t t r a n s i e n t a t s h u t d o w n a c t i v e v dd hp_out amp_out ((out+)-(out-)) 5v/div 10mv/div 20mv/div amp_out ((out+)-(out-)) hp_out 5v/div 10mv/div 20mv/div sd 2 0 0 m s / d i v 2 0 m s / d i v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 9 a p a 2 0 5 1 pin no. name function 1 inl_a left channel input terminal for speaker amplifier 2 inl_ h left channel input terminal for headphone driver 3,14 n.c. no connection 4,20 pgnd power ground 5 lout+ left channel positive output for speaker 6 lout - lef t channel negative output for speaker 7 ,1 7 pvdd power amplifier power supply 8 cvdd charge pump power supply 9 cp+ charge pump flying capacitor positive connection 10 cgnd charge pump ground 11 cp - charge pump flying capacitor negative connec tion 1 2 hvss charge pump output and headphone amplifier negative power supply pin 13 hp_r right channel output for headphone 15 hv dd headphone amplifier positive power supply 16 hp_l left channel output for headphone 18 rout - right channel negativ e output for speaker 19 rout+ right channel positive output for speaker 21 hp_en headphone driver enable pin, pull high to enable headphone mode 22 b ias bias voltage generator 23 set it has 19 steps gain setting control from 2.0~4.2v; pull high to 5v is 10.5db fix gain and pull low to 0v, the apa205 1 enter shutdown mode. i sd = 80 m a 24 amp_en speaker driver enable pin, pull low to enable speaker mode 25 vdd power supply for control section 26 gnd ground 27 inr_a right channel input termi nal for speaker amplifier 28 inr_ h right channel input terminal for headphone driver p i n d e s c r i p t i o n
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 0 a p a 2 0 5 1 b l o c k d i a g r a m charge pump spk en hp en inr_a inl_a inr_h inl_h set bias cp+ cp- hp_r hp_l amp_en hp_en set vss *40k w *40k w hvdd pvdd vdd cvdd cgnd pgnd gnd rout- rout+ lout- lout+ * the internal rf s value has 10% variation by process r f (hp_r) r f (hp_l) power ma n agement internal gain setting ,
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 1 a p a 2 0 5 1 t y p i c a l a p p l i c a t i o n c i r c u i t ring headphone jack sleeve tip r_ch r_ch for amp l_ch for amp r_ch for hp 39k w 2.2 m f 2.2 m f 4 w charge pump spk en hp en inr_a inl_a inr_h inl_h set bias cp+ cp- hp_r hp_l amp_en hp_en set v ss *40k w *40k w hv dd pv dd v dd cv dd internal gain setting cgnd pgnd gnd rout- rout+ 2.2 m f 3.3 m f l_ch for hp 39k w 3.3 m f 1 m f 1 m f l_ch 4 w lout- lout+ 1 m f 0.1 m f 0.1 m f 10 m f 0.1 m f c i (amp_r) c i (amp_l) c i (hp_r) c i (hp_l) r i (hp_r) r i (hp_l) r f (hp_r) r f (hp_l) c cpb c cpf c cpo 10 n f v dd (5v) 10k w r # shutdown r # : for the gain setting of speaker driver that you need, refer to the gain setting table s recommended voltage, and setting this voltage at set pin s voltage =5r # /(r # +10k). r1 <=25k w . v dd (5v) v dd (5v) hv dd (3.3v) v ss 510 k w 0.47 n f recommended for de-pop c b pull-high hp_en to enable headohone driver r 1 c s(vdd) c s(pvdd) c s(hvdd) set power ma n agement , ,
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 2 a p a 2 0 5 1 a m p l i f i e r m o d e o p e r a t i o n t h e a p a 2 0 5 1 h a s t w o p a i r s o f o p e r a t i o n a l a m p l i f i e r s i n t e r n a l l y , w h i c h a l l o w s d i f f e r e n t a m p l i f i e r c o n f i g u r a t i o n s . f i g u r e 1 . a p a 2 0 5 1 i n t e r n a l c o n f i g u r a t i o n ( e a c h c h a n n e l ) t h e o p 1 a n d o p 2 a r e a l l d i f f e r e n t i a l d r i v e c o n f i g u r a t i o n s . t h e d i f f e r e n t i a l d r i v e c o n f i g u r a t i o n s d o u b l i n g t h e v o l t a g e s w i n g o n t h e l o a d . c o m p a r e w i t h t h e s i n g l e - e n d i n g c o n f i g u r a t i o n , t h e d i f f e r e n t i a l g a i n f o r e a c h c h a n n e l i s 2 x ( g a i n o f s e m o d e ) . b y d r i v i n g t h e l o a d d i f f e r e n t i a l l y t h r o u g h o u t p u t s o u t + a n d o u t - , a n a m p l i f i e r c o n f i g u r a t i o n c o m m o n l y r e f e r r e d t o a l l d i f f e r e n t i a l m o d e i s e s t a b l i s h e d . a l l d i f f e r e n t i a l m o d e o p e r a t i o n i s d i f f e r e n t f r o m t h e c l a s s i c a l s i n g l e - e n d e d s e a m p l i f i e r c o n f i g u r a t i o n w h e r e o n e s i d e o f i t s l o a d i s c o n - n e c t e d t o t h e g r o u n d . a d i f f e r e n t i a l a m p l i f i e r d e s i g n h a s a f e w d i s t i n c t a d v a n - t a g e s o v e r t h e s e c o n f i g u r a t i o n , a s i t p r o v i d e s d i f f e r e n t i a l d r i v e t o t h e l o a d , t h u s i t i s d o u b l i n g t h e o u t p u t s w i n g f o r a s p e c i f i e d s u p p l y v o l t a g e . t h e o u t p u t p o w e r c a n b e 4 t i m e s g r e a t e r t h a n t h e s e a m p l i f i e r w o r k i n g u n d e r t h e s a m e c o n d i t i o n . a d i f f e r e n t i a l c o n f i g u r a t i o n , s i m i l a r a s t h e o n e u s e d i n a p a 2 0 5 1 , a l s o c r e a t e s a s e c o n d a d v a n t a g e o v e r s e a m p l i f i e r s . s i n c e t h e d i f f e r e n t i a l o u t p u t s , r o u t + , r o u t - , l o u t + , a n d l o u t - a r e b i a s e d a t h a l f - s u p p l y , i t ? s n o t n e c e s s a r y f o r d c v o l t a g e t o b e a c r o s s t h e l o a d . t h i s e l i m i n a t e s t h e n e e d f o r a n o u t p u t c o u p l i n g c a p a c i t o r w h i c h i s r e q u i r e d i n a s i n g l e s u p p l y , s e c o n f i g u r a t i o n . the apa2051?s headphone amplifiers uses a charge pump to invert the positive power supply (cv dd ) to nega- tive power supply (cv ss ), see figure 2. the headphone amplifiers operate at this bipolar power supply (hv dd & v ss ), and the outputs reference refers to the ground. this feature eliminates the output capacitor which is using in conventional single-ended headphone amplifier. t h e h e a d p h o n e a m p l i f i e r i n t e r n a l s u p p l y v o l t a g e c o m e s f r o m h v d d a n d v s s . f o r g o o d a c p e r f o r m a n c e , t h e h v d d c o n - n e c t e d t o 3 . 3 v i s r e c o m m e n d e d . i t c a n a v o i d t h e o u t p u t o v e r v o l t a g e f o r l i n e o u t a p p l i c a t i o n . charge pump flying capacitor the flying capacitor (c cpf ) affects the load transient of the charge pump. if the capacitor?s value is too small, and then that will degrade the charge pump?s current driver capability and the performance of headphone amplifier. increasing the flying capacitor?s value will improve the load transient of charge pump. it is recommended to use the low esr ceramic capacitors (x7r type is recommended) above 1 m f. figure 2. cap-free operation pre-amplifier output signal v bias op1 op2 - + - + out+ out- diff_amp_config headphone mode operation a p p l i c a t i o n i n f o r m a t i o n h v dd h v dd /2 gnd v out h v dd v ss gnd v out conventional headphone amplifier cap-free headphone amplifier
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 3 a p a 2 0 5 1 the hp_en will detect the voltage. if the voltage is less than 0.8v, the headphone amplifiers will be disabled; if the voltage is greater than 2v, the headphone amplifier will be enabled. in figure 3, phone-jack with the control pin is used and connected to hp_en input from control pin. when a head- phone plug is inserted, the hp_en will pull high inter- nally which enables headphone amplifiers; without head- phone plug, the hp_en is pulled to the gnd. operation mode the apa2051 amplifier has two pairs of independent amplifier. one for stereo speaker is btl structure, and the other for headphone is cap-less structure. each pair has independent input pin; inr_a and ina_l are for ste- reo speaker drivers, and inr_h and inl_h are for stereo headphone drivers. amplifier mode operation: pull low the amp_en con- trol pin can enable the stereo speaker driver. headphone mode operation: pull high the hp_en control pin can enable the cap-less headphone drive. both amplifier and headphone ?on? mode: pull low the amp_en and pull high the hp_en control pins, and then turn on both speaker drivers and head- phone drivers both amplifier and headphone ?off? mode: pull high the amp_en and pull low the hp_en control pins, and then turn off both speaker drivers and headphone drivers if the amp_en and hp_en are connected together, this pin will be connected to headphone jack?s control pin (figure 3), the apa2051 is switchable between ?amplifier mode (headphone mute), or headphone mode (amplifier mute). g a i n s e t t i n g t h e g a i n f o r s p e a k e r d r i v e r s c a n b e a d j u s t a b l e b y a p p l y - i n g d c v o l t a g e t o t h e s e t p i n . t h e a p a 2 0 5 1 c o n t r o l c o n - s i s t s o f 1 9 s t e p g a i n s e t t i n g s f r o m 2 . 0 v t o 4 . 2 v , a n d t h e g a i n i s f r o m - 7 d b t o 1 6 d b . e a c h g a i n s t e p c o r r e s p o n d s t o a s p e c i f i c i n p u t v o l t a g e r a n g e , a s s h o w n i n t h e ? g a i n s e t - t i n g t a b l e ? . t o m i n i m i z e t h e e f f e c t o f n o i s e o n t h e g a i n s e t t i n g c o n t r o l , w h i c h c a n a f f e c t t h e s e l e c t e d g a i n l e v e l , h y s t e r e s i s a n d c l o c k d e l a y a r e i m p l e m e n t e d . f o r t h e h i g h - e s t a c c u r a c y , t h e v o l t a g e s h o w n i n t h e ? r e c o m m e n d e d v o l t a g e ? c o l u m n o f t h e t a b l e i s u s e d t o s e l e c t a d e s i r e d g a i n . t h i s r e c o m m e n d e d v o l t a g e i s e x a c t l y h a l f w a y b e - t w e e n t h e t w o n e a r e s t t r a n s i t i o n s . t h e a m o u n t o f h y s t e r - e s i s c o r r e s p o n d s t o h a l f o f t h e s t e p w i d t h , a s s h o w n i n f i g u r e 4 . a p p l y 0 v t o s e t p i n w i l l p l a c e t h e a p a 2 0 5 1 i n t o s h u t d o w n m o d e , a n d w h e n s d = 5 v , i t a l l o w s t h e s p e a k e r d r i v e r a t a f i x e d g a i n ( a v = 1 0 . 5 d b ) . figure 3. hpd configurations charge pump output capacitor the output capacitor (c cpo )?s value affects the power ripple directly at cv ss (v ss ). increasing the value of output capacitor reduces the power ripple. the esr of output capacitor affects the load transient of cv ss (v ss ). lower esr and greater than 1 m f ceramic capacitor (x7r type is recommended) is a recommendation. charge pump bypass capacitor the bypass capacitor (c cpb ) relates with the charge pump switching transient. the capacitor?s value is the same as flying capacitor (1 m f). place it close to the cv dd and pgnd. headphone detection input a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) ring headphone jack with swich sleeve control pin tip hp_en hpd_switch hp_l hp_r 1k w 1k w headphone detection dc volume (v) g a i n ( d b ) 0.0 1.0 2.0 3.0 4.0 5.0 -70 -60 -50 -40 -30 -20 -10 0 10 20 forward backward figure 4 . apa2051 gain setting vs. set pin voltage
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 4 a p a 2 0 5 1 hp mode gain setting table for reference r i(hp) ,external (k w ) *r f(hp) ,internal (k w ) hp out (v/v) hp gain(db) 62 40 0.65 - 3.8 50 40 0.80 - 1.9 39 40 1.03 0.2 30 40 1.33 2.5 24 40 1.67 4.4 20 40 2.00 6.0 *the internal rf's value has 10% variation by p rocess. when the input resistance variation is considered, the c i is 1.6 m f, so a value in the range of 2.2 m f to 3.3 m f would be chosen. a further consideration for this capacitor is the leakage path from the input source through the input net- work (r i +r f , c i ) to the load. this leakage current creates a dc offset voltage at the input to the amplifier that re- duces useful headroom, especially in high gain applications. for this reason, a low-leakage tantalum or ceramic capacitor is the best choice. when polarized capacitors are used, the positive side of the capacitor should face the amplifiers? input because the dc level of the amplifiers? input is held at v dd /2. please note that it is (2) important to confirm the capacitor polarity in the application. note: the headphone dirver?s input is ground reference, so please check the c i(hp) ?s polarized at design. effective bias capacitor, c b as with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. the capacitor location on both the bypass and power supply pins should be as close to the device as possible. the effect of a larger bypass capacitor is improved psrr due to increased 1.8v bias voltage stability. typical appli- cations employ a 5v regulator with 2.2 m f and a 0.1 m f bypass capacitor, which aids in supply filtering. this does not eliminate the need for bypassing the supply nodes of the apa2051. the selection of bypass capacitors, espe- cially c b , is thus dependent upon desired psrr require- ments and click-and-pop performance. power supply decoupling, c s the apa2051 is a high-performance cmos audio ampli- fier that requires adequate power supply decoupling to ensure the output total harmonic distortion (thd+n) is as low as possible. power supply decoupling also pre- vents the oscillations caused by long lead length between the amplifier and the speaker. the optimum decoupling is achieved by using two different types of capacitor that target on different types of noise on the power supply leads. for higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (esr) ceramic capacitor, typically 0.1 m f, is placed as close as possible to the device v dd lead works best (the pin1 (v dd ) and pin2 (gnd)?s capacitor must short less than 1cm). for filtering lower-frequency noise signals, a large aluminum electrolytic capacitor of 10 m f or greater is placed near the audio power amplifier is recommended. shutdown function in order to reduce power consumption while not in use, the apa2051 contains a shutdown pin to externally turn off the amplifier bias circuitry. this shutdown feature turns the amplifier off when a logic low is placed on the set pin. the trigger point between a logic high and logic low a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) input capacitor, c i in the typical application, an input capacitor, c i , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. in this case, c i and the minimum input impedance r i from a high-pass filter with the corner frequency are determined by the following equation: the value of c i must be considered carefully because it directly affects the low frequency performance of the circuit. consider the example where r i is 10k w and the specification calls for a flat bass response down to 10hz. the equation is reconfigured as below: f o r h e a d p h o n e d r i v e r , t h e i n t e r n a l f e e d b a c k r e s i s t o r i s 4 0 k w ( r f ( h p ) e x t e r n a l , 1 0 % v a r i a t i o n b y p r o c e s s ) , t h e r e f o r e , t h e h e a d p h o n e d r i v e r ? s g a i n i s s e t b y t h e i n p u t r e s i s t o r ( r i ( h p ) e x t e r n a l ) , t h e t a b l e 1 l i s t s t h e r e f e r e n c e g a i n s e t - t i n g s w i t h e x t e r n a l r e s i s t o r f o r h e a d p h o n e d r i v e r ( h p m o d e ) . t a b l e 1 . g a i n s e t t i n g t a b l e f o r r e f e r e n c e g a i n s e t t i n g ( c o n t . ) ) c r (2 1 = (highpass) f i i(min) c p (1) fc) r (2 1 = c i i p
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 5 a p a 2 0 5 1 po (w) efficiency (%) idd(a) vpp (v) pd (w) 0.25 31. 25 0.16 2.00 0.55 0.50 47.62 0.21 2.83 0.55 1.00 66.67 0.30 4.00 0.5 1.25 78.13 0.32 4.47 0. 35 **high peak voltages cause the thd to increase. d+n to increase (5) (7) (6) shutdown function (cont.) (4) table 1 calculates efficiencies for four different output power levels. note that the efficiency of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in nearly flat in- ternal power dissipation over the normal operating range. note that the internal dissipation at full output power is less than in the half power range. calculating the effi- ciency for a specific system is the key to proper power supply design. for a stereo 1w audio system with 8w loads and a 5v supply, the maximum draw on the power supply is almost 3w. psup p o efficiency = (3) 4v r r 2v * v / 2r ) v * (v psup p dd l l p dd l p p o p = t y ? p t y ? = l p p l o o o 2r ) v * (v r rms v * rms v p = = where: 2 v rms v p o = r 2v * v = (avg) i * v = psup l p dd dd dd p efficiency of a differential configuration: since the apa2051 is a dual channel power amplifier, the maximum internal power dissipation is 2 times that both of equations depending on the mode of operation. even with this substantial increasing in power dissipation, the apa2051 does not require extra heatsink. the power dis- sipation from equation 9, assuming a 5v-power supply and an 8 w load, must not be greater than the power dis- sipation that results from the equation 9: a final point to remember about linear amplifiers is how to manipulate the terms in the efficiency equation to the utmost advantage when possible. note that in equation, v dd is in the denominator. this indicates that as v dd goes down, efficiency goes up. in other words, using the effi- ciency analysis to choose the correct supply voltage and speaker impedance for the application. power dissipation whether the power amplifier is operated in btl or se modes, power dissipation is a major concern. teh equa- tion 8 states the maximum power dissipation point for a se mode operating at a given supply voltage and driving a specified load. se mode: in btl mode operation, the output voltage swing is doubled as in se mode. thus, the maximum power dis- sipation point for a btl mode operating at the same given conditions is 4 times as in se mode. btl mode: (8) (9) a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) level is typically 2.0v. it is the best to switch between the ground and the supply v dd to provide maximum device performance. by switching the set pin to low, the amplifier enters a low-current consumption state, i dd <80 m a. in normal operating, the set pin is pulled to high level to keep the ic out of the shutdown mode. the set pin should be tied to a definite voltage to avoid unwanted state changing. the wake-up time of shutdown is about 150ms, and the shutdown release?s pop is caused by the operational amplifier?s offset. speaker driver amplifier efficiency an easy-to-use equation to calculate efficiency starts out as being equal to the ratio of power from the power sup- ply to the power delivered to the load. the following equa- tions are the basis for calculating amplifier efficiency. t a b l e 2 . e f f i c i e n c y v s . o u t p u t p o w e r i n 5 - v / 8 w d i f f e r e n t i a l a m p l i f i e r s y s t e m s . (10) ja a max j, max d, t - t = p q r 2 v = p l 2 2 dd max d, p r 2 4v = p l 2 2 dd max d, p
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 6 a p a 2 0 5 1 thermal consideration linear power amplifiers dissipate a significant amount of heat in the package under normal operating conditions. in the power dissipation vs. output power graph , the apa2051 is operating at a 5v supply and a 4 w speaker that 2w output power peaks are available. the vertical axis gives the information of power dissipation (p d ) in the ic with respect to each output driving power (p o ) on the horizontal axis. this is valuable information when attempting to estimate the heat dissipation of the ic requirements for the ampli- fier system. u sing the power dissipation curves for a 5v/4 w system, the internal dissipation in the apa2051 and maximum ambient temperatures is shown in table 3. a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) for tqfn4x4-28 package with thermal pad, the thermal resistance ( q ja ) is equal to 45 o c/w. since the maximum junction temperature (t j,max ) of apa2051 is 150 c and the ambient temperature (t a ) is defined by the power system design, the maximum power dissipation that the ic package is able to handle can be obtained from equation10. once the power dissipation is greater than the maximum limit (p d,max ), either the sup- ply voltage (v dd ) must be decreased, the load impedance (r l ) must be increased or the ambient temperature should be reduced. thermal pad consideration the thermal pad must be connected to the ground. the package with thermal pad of the apa2051 requires spe- cial attention on the thermal design. if the thermal design issues are not properly addressed, the apa2051 4 w will go into thermal shutdown when driving a 4 w load. the thermal pad on the bottom of the apa2051 should be soldered down to a copper pad on the circuit board. heat can be conducted away from the thermal pad through the copper plane to ambient. if the copper plane is not on the top surface of the circuit board, 8 to 10 vias of 15 mil or smaller in diameter should be used to thermally couple the thermal pad to the bottom plane. for good thermal conduction, the vias must be plated through and solder filled. the copper plane used to conduct heat away from the thermal pad should be as large as practical. if the ambient temperature is higher than 25 c, a larger copper plane or forced-air cooling will be required to keep the apa2051 junction temperature below the thermal shut- down temperature (150 c). in higher ambient temperature, higher airflow rate and/or larger copper area will be required to keep the ic out of the thermal shutdown. see demo board circuit layout as an example for pcb layout. power dissipation (cont.) max. t a ( c) peak output power (w ) a verage output power (w) power dissipation ( w/channel ) with thermal pad 2 1.95 1.25 37 2 1.17 1.25 37 2 0.74 1.19 43 2 0.43 1.05 55 2 0.19 0.8 78 table 3 . apa20 51 power information , 5v /4 w , stereo , differential m ode 2.2mm figure 5 . tqfn4x4 - 28 l and pattern r ecommendation 0.45mm 0.25mm 1.0mm ground plane for thermalpad thermalvia diameter 0.3mm x 9 2 . 2 m m 3 . 2 m m solder mask to prevent short circuit
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 7 a p a 2 0 5 1 table 3 shows that for some applications, no airflow is required to keep junction temperatures in the specified range. the apa2051 is designed with a thermal shut- down protection that turns the device off when the junc- tion temperature surpasses 150 c to prevent ic from damaging. the information in table 3 was calculated for maximum listen volume with limited distortion. when the output level is reduced, the numbers in the table change significantly. also, using 8 w speakers will dramatically increase the thermal performance by increasing ampli- fier efficiency. a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) 150 - 45(0.8*2) = 78 c (with thermal pad) note: internal dissipation of 0.8w is estimated for a 2w system with 15-db headroom per channel. p - t = t d ja max j, max a, q (11) thermal consideration (cont.) this parameter is measured with the recommended cop- per heat sink pattern on a 2-layer pcb, 23cm 2 in 5.7mmx4mm in pcb, 2oz. copper, 100mm 2 coverage. airflow 0 cfm the maximum ambient temperature de- pends on the heat sink ability of the pcb system. to calculate maximum ambient temperatures, first con- sideration is that the numbers from the dissipation graphs are per channel values, so the dissipation of the ic heat needs to be doubled for two-channel operation. given q ja , the maximum allowable junction temperature (t j,max ), and the total intemal dissipation (p d ), the maxi- mum ambient temperature can be calculated with the following equation. the maximum recommended junc- tion temperature for the apa2051 is 150 c. the internal dissipation figures are taken from the power dissipation vs. output power graph. package q ja tqfn4x4 - 28 45 c/w table 4 . thermal resistance table
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 8 a p a 2 0 5 1 p a c k a g e i n f o r m a t i o n t q f n 4 x 4 - 2 8 a d e a1 a3 pin 1 corner e 2 l d2 e b s y m b o l min. max. 0.80 0.00 0.17 0.27 2.10 2.50 0.05 2.10 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tqfn4x4-28 0.35 0.45 2.50 0.008 ref min. max. inches 0.031 0.000 0.007 0.011 0.083 0.098 0.083 0.014 0.018 0.70 0.098 0.028 0.002 3.90 0.45 bsc 0.018 bsc k 4.10 0.154 0.161 3.90 4.10 0.154 0.161 0.20 - 0.008 - k pin 1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 9 a p a 2 0 5 1 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn4x4 - 28 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 4.30 ? 0.20 4.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s package type unit quantity tqfn 4x4 - 28 tape & reel 3000 d e v i c e s p e r u n i t a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 3 0 a p a 2 0 5 1 t a p i n g d i r e c t i o n i n f o r m a t i o n t q f n 4 x 4 - 2 8 user direction of feed c l a s s i f i c a t i o n p r o f i l e
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 3 1 a p a 2 0 5 1 profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spec ified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined a s a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. c l a s s i f i c a t i o n r e f l o w p r o f i l e s table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c r e l i a b i l i t y t e s t p r o g r a m test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ 125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a115 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 4 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 3 2 a p a 2 0 5 1 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APA2051QBI-TRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X