![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
1 c as 300 m 1 2 b m2 1. 2 k v, 5 . 0 m ? all - silicon carbide half - bridge module z - fet ? mosfet and z - rec ? diode module features package 62 mm x 10 6 mm x 30 mm ? ultra low loss ? high - frequency operation ? zero reverse recovery current from diode ? zero turn - off tail current from mosfet ? normally - off, fail - safe device operation ? ease of paralleling ? copper baseplate and aluminum nitride insulator system benefits ? enable s compact and lightweight s ystem s ? high efficiency operation ? mitigate s over - voltage protection ? reduces thermal requirements ? enable s simplified topologies applications ? induction heating ? motor drives ? solar and wind inverters ? ups and smps ? traction maximum ratings (t c = 25 c unless otherwise specified) symbol parameter value unit test conditions note v ds max drain C source voltage 1 . 2 k v v gs max gate C source voltage - 10 /+25 v absolute maximum values v gsop gate C source voltage - 5/+20 v recommended operational values i d continuous drain current 4 04 a v gs = 20 v, t c = 25 c fig 20 285 a v gs = 20 v, t c = 90 c i dpulse pulsed drain current 1 5 00 a p ulse width t p = 200 s repetition rate limited by t j(max) , t c = 25c t j max junction temperature 150 c t c t stg case and storage temperature range - 40 to +1 25 c p tot maximum power dissipation 1660 w t c = 25 c, t j = 150 c v isol case isolation voltage 4.0 k v ac, 50 hz, 1 min l stray stray i nductance 14 nh measured between terminals 2 and 3 m mounting torque 5 nm to heatsink and terminals g weight 3 0 0 g clearance distance 12 mm terminal to terminal creepage distance 30 mm terminal to terminal 40 mm terminal to baseplate v ds = 1. 2 k v e sw ,total@30 0 a = 12.0 mj r ds(on ) = 5 .0 m part number package marking c as 30 0 m 1 2 b m2 half bridge module c as 30 0 m 1 2 b m2
2 electrical characteristics (t c = 25 c unless otherwise specified) symbol parameter value unit test conditions note s min typ max v (br)dss drain C source breakdown voltage 1. 2 k v v gs = 0 v, i d s = 1 m a v gs(th) gate threshold voltage 2.0 2. 3 v v ds = 10 v, i d s = 15 m a fig 11 i dss zero gate voltage drain current 5 0 0 2000 a v ds = 1 . 2 k v, v gs = 0 v 1000 v ds = 1 . 2 k v, v gs = 0 v t j = 1 5 0 c i gss gate - source leakage current 1 100 n a v gs = 2 0 v, v ds = 0 v r ds(on) drain - source on - state resistance 5 .0 5.7 m v gs = 20 v, i d s = 30 0 a fig 4, 5 and 6 8.6 9.8 v gs = 20 v, i d s = 30 0 a, t j = 150 c g fs transconductance 94.8 s v ds = 20 v, i d s = 30 0 a fig 7 93.3 v ds = 20 v, i d s = 30 0 a, t j = 150 c c iss input capacitance 11.7 n f v ds = 6 00 v f = 200 k hz, v ac = 25 mv fig 1 7, 18 c oss output capacitance 2. 5 5 c rss reverse transfer capacitance 0.0 7 t d(on) turn - on delay time 76 v dd = 600 v, v gs = - 5/20 v i d = 300 a, r g(ext) = 2.5 , timing relative to v ds per iec60747 - 8 - 4 pg 83 inductive load fig 24 t r rise time 68 t d(off) turn - off delay time 168 t f fall time 43 e on turn - on switching energy 6.05 mj v ds = 600 v, v gs = - 5 / 20 v i ds = 300 a, r g = 2.5 , inductive load fig 25 e off turn - off switching energy 5.95 free - wheeling diode characteristics symbol parameter value unit test conditions notes min typ max v sd diode forward voltage 1. 7 2.0 v i sd = 30 0 a, t j = 25c , v gs = 0 v fig 8, 9 and 10 2.2 2. 5 v i sd = 30 0 a, t j = 150c , v gs = 0 v q c total capacitive charge 3. 2 c note: the reverse recovery is purely capacitive. gate charge characteristics symbol parameter value unit test conditions notes min typ max q gs gate to source charge 16 6 nc v ds = 800 v, v gs = - 5 /+ 20 v i ds = 30 0 amps per jedec24 pg 27 fig 1 2 q gd gate to drain charge 475 q g total gate charge 1 0 2 5 r g internal gate resistance 3 .0 f = 200 k hz, v ac = 25 mv thermal characteristics symbol parameter value unit test conditions notes min typ max r jc m thermal resistance junction to case for mosfet 0.0 7 0 0.07 5 c/ w t c = 90 c, t j =150 c p dis = p max fig 17 r jcd thermal resistance junction to case for diode 0.0 73 0.0 76 fig 18 3 typical performance fig 1. typical output characteristics t j = - 40 c fig 2. typical output characteristics t j = 25 c fig 3 . typical output characteristics t j = 150 c fig 4 . normalized on - resistance vs. temperatu re fig 5 . typical on - resistance vs. temperatu re and gate voltage fig 6 . typical on - resistance vs. gate voltage 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = - 40 c t p = 200 s v gs = 20 v v gs = 18 v v gs = 10 v v gs = 12 v v gs = 14 v v gs = 16 v 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 25 c t p = 200 s v gs = 20 v v gs = 18 v v gs = 10 v v gs = 12 v v gs = 14 v v gs = 16 v 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 150 c t p = 200 s v gs = 20 v v gs = 18 v v gs = 10 v v gs = 12 v v gs = 14 v v gs = 16 v 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 - 50 - 25 0 25 50 75 100 125 150 on resistance, r ds on (p.u.) junction temperature, t j ( c) conditions: i ds = 300 a v gs = 20 v t p = 200 s 0 2 4 6 8 10 12 - 50 - 25 0 25 50 75 100 125 150 on resistance, r ds on (m ) junction temperature, t j ( c) conditions: i ds = 300 a t p = 200 s v gs = 20 v v gs = 18 v v gs = 16 v v gs = 14 v v gs = 12 v 0 2 4 6 8 10 12 14 16 18 20 10 12 14 16 18 20 on - resistance, r ds on (m ) gate - source voltage, v gs (v) t j = - 40 c t j = 25 c t j = 150 c conditions: i ds = 300 a t p = 200 s 4 typical performance fig 7 . typical transfer characteristic for various temperatures fig 8. typical diode behavior t j = - 40 c fig 9. typical diode behavior t j = 25 c fig 10. typical diode behavior t j = 150 c fig 11 . typical threshold voltage vs. temperature fig 12. typical gate charge 0 100 200 300 400 500 0 2 4 6 8 10 12 14 drain - source current, i ds (a) gate - source voltage, v gs (v) conditions: v ds = 20 v tp < 200 s t j = 150 c t j = - 40 c t j = 25 c - 600 - 500 - 400 - 300 - 200 - 100 0 - 4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = - 40 c t p = 200 s v gs = - 2 v v gs = - 5 v v gs = 0 v - 600 - 500 - 400 - 300 - 200 - 100 0 - 4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 25 c t p = 200 s v gs = - 2 v v gs = - 5 v v gs = 0 v - 600 - 500 - 400 - 300 - 200 - 100 0 - 4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 150 c t p = 200 s v gs = - 2 v v gs = - 5 v v gs = 0 v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 - 50 - 25 0 25 50 75 100 125 150 threshold voltage, v th (v) junction temperature t j ( c) conditions v ds = 10 v i ds = 0.5 ma conditions v ds = 10 v i ds = 15 ma - 5 0 5 10 15 20 25 0 200 400 600 800 1000 1200 gate - source voltage, v gs (v) gate charge (nc) conditions: tj = 25 c i ds = 300 a v ds = 1000 v 5 typical performance fig 1 3 . typical 3 rd quadrant behavior t j = - 40 c fig 1 4 . typical 3 rd quadrant behavior t j = 25 c fig 1 5 . typical 3 rd quadrant behavior t j = 150 c fig 1 6 . typical output capacit or stored energy fig 1 7 . typical capacitances vs. drain - source voltage. (0 - 200v) fig 1 8 . typical capacitances vs. drain - source voltage. (0 - 1000v) - 600 - 500 - 400 - 300 - 200 - 100 0 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 25 c t p = 200 s conditions: t j = - 40 c t p = 200 s v gs = 10 v v gs = 5 v v gs = 20 v v gs = 15 v v gs = 0 v - 600 - 500 - 400 - 300 - 200 - 100 0 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 25 c t p = 200 s conditions: t j = 25 c t p = 200 s v gs = 10 v v gs = 5 v v gs = 20 v v gs = 15 v v gs = 0 v - 600 - 500 - 400 - 300 - 200 - 100 0 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 drain - source current, i ds (a) drain - source voltage v ds (v) conditions: t j = 25 c t p = 200 s conditions: t j = 150 c t p = 200 s v gs = 10 v v gs = 5 v v gs = 20 v v gs = 15 v v gs = 0 v 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 200 400 600 800 1000 1200 stored energy, e oss (mj) drain to source voltage, v ds (v) 0.01 0.1 1 10 100 0 50 100 150 200 capacitance (nf) drain - source voltage, v ds (v) c iss c oss conditions: t j = 25 c v ac = 25 mv f = 200 khz c rss 0.01 0.1 1 10 100 0 200 400 600 800 1000 capacitance (nf) drain - source voltage, v ds (v) c iss c oss conditions: t j = 25 c v ac = 25 mv f = 200 khz c rss 6 typical performance fig 19 . max . continuous power derating curve vs. case temperature. fig 20 . max . continuous current derating curve vs. case temperature fig 21 . typical transient thermal impedance - mosfet fig 22 . typical transient thermal impedance - diode fig 23 . mosfet safe operating area fig 24 . typical inductive switching time vs gate resistance (v d d = 6 00v , i d = 300a ) 0 200 400 600 800 1000 1200 1400 1600 1800 - 25 0 25 50 75 100 125 maximum dissipated power, p tot (w) case temperature, t c ( c) conditions: t j 150 c 0 50 100 150 200 250 300 350 400 450 - 25 0 25 50 75 100 125 drain - source continous current, i ds (dc) (a) case temperature, t c ( c) conditions: t j 150 c 10e - 6 100e - 6 1e - 3 10e - 3 100e - 3 1e - 6 10e - 6 100e - 6 1e - 3 10e - 3 100e - 3 1 junction to case impedance, z thjc ( o c/w) time, t p (s) 0.5 0.3 0.1 0.05 0.02 0.01 singlepulse 10e - 6 100e - 6 1e - 3 10e - 3 100e - 3 1e - 6 10e - 6 100e - 6 1e - 3 10e - 3 100e - 3 1 junction to case impedance, z thjc ( o c/w) time, t p (s) 0.5 0.3 0.1 0.05 0.02 0.01 singlepulse 0.01 0.10 1.00 10.00 100.00 1000.00 0.100 1.000 10.000 100.000 1000.000 drain - source current, i ds (a) drain - source voltage, v ds (v) 100 s 1 ms 1 s conditions: t c = 25 c d = 0, parameter: t p limited by r ds on 100 ms 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 35 40 time (ns) external gate resistor, r g(ext) (ohms) conditions: t j = 25 c v dd = 600 v i ds = 300 a v gs = - 5/+20 v t d (off) t d (on) t f t r 7 typical performance fig 2 5 . typical clamped inductive switching energy vs drain current (v d d = 600v) fig 2 6 . typical clamped inductive switching energy vs drain current (v d d = 800v) fig 2 7 . typical switching loss vs. temperature fig 2 8 . typical switching loss vs. gate resistance 0 2 4 6 8 10 12 14 16 18 20 0 50 100 150 200 250 300 350 400 450 switching loss (mj) drain to source current, i ds (a) e off e on e total conditions: t j = 25 c v dd = 600 v r g(ext) = 2.5 ? v gs = - 5/+20 v l = 77 h 0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 400 450 switching loss (mj) drain to source current, i ds (a) e off e on e total conditions: t j = 25 c v dd = 800 v r g(ext) = 2.5 ? v gs = - 5/+20 v l = 77 h 0 2 4 6 8 10 12 14 0 25 50 75 100 125 150 175 switching loss (mj) junction temperature, t j ( c) e off e on e total conditions: v dd = 600 v r g(ext) = 2.5 ? i ds =300 a v gs = - 5/+20 v l = 77 h 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40 45 switching loss (mj) external gate resistor r g (ext) (ohms) e off e on e total conditions: t j = 25 c v dd = 600 v i ds =300 a v gs = - 5/+20 v l = 77 h 8 schematic mechanical characteristics (in mm) |
Price & Availability of CAS300M12BM2
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |