Part Number Hot Search : 
DDZ10CS 8HC71 HLP5050 D2W101 WM8599 CXA1846N UC2842AM ACTS541K
Product Description
Full Text Search
 

To Download IRG4MC30F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4MC30F insulated gate bipolar transistor e c g n-channel features benefits v ces = 600v v ce(on) max =1.7v @v ge = 15v, i c = 15a parameter max. units v ces collector-to-emitter breakdown voltage 600 v i c @ t c = 25c continuous collector current 28 i c @ t c = 100c continuous collector current 15 a i cm pulsed collector current  112 i lm clamped inductive load current  112 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 75 w p d @ t c = 100c maximum power dissipation 30 t j operating junction and -55 to + 150 t stg storage temperature range c lead temperature 300 (0.063in./1.6mm from case for 10s) weight 9.3 (typical) g absolute maximum ratings  www.irf.com 1 fast speed igbt ? electrically isolated and hermetically sealed ? simple drive requirements ? latch-proof ? fast speed operation 3 khz - 8 khz ? high operating frequency ? switching-loss rating includes all "tail" losses ? ceramic eyelets ? generation 4 igbt's offer highest efficiency available ? igbt's optimized for specified application conditions ? designed to be a "drop-in" replacement for equivalent ir hi-rel generation 3 igbt's insulated gate bipolar transistors (igbts) from international rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power mosfet. they provide substantial benefits to a host of high-voltage, high- current applications. to-254aa thermal resistance parameter min typ max units test conditions r thjc junction-to-case ? ? 1.67 c/w pd-94313d
2 www.irf.com IRG4MC30F parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? ??? 77 i c = 15a q ge gate - emitter charge (turn-on) ??? ??? 12 nc v cc = 300v see fig. 8 q gc gate - collector charge (turn-on) ??? ??? 24 v ge = 15v t d(on) turn-on delay time ??? ??? 42 t j = 25c t r rise time ??? ??? 30 i c = 15a, v cc = 480v t d(off) turn-off delay time ??? ??? 300 v ge = 15v, r g = 7.5 ? t f fall time ??? ??? 300 energy losses include "tail" e ts total switching loss ??? ??? 2.0 mj see fig. 10, 11, 13, 14 t d(on) turn-on delay time ??? ??? 42 t j = 125c, t r rise time ??? ??? 20  i c = 15a, v cc = 480v t d(off) turn-off delay time ??? ??? 450 v ge = 15v, r g = 7.5 ? t r rise time ??? ??? 550 energy losses include "tail" e ts total switching loss ??? ??? 3.0 mj see fig. 13, 14 l c + l e total inductance ??? 6.8 ??? nh measured from collector lead (6mm/ 0.25in. from package) to emitter lead (6mm / 0.25in. from package) c ies input capacitance ??? 1100 ??? v ge = 0v c oes output capacitance ??? 74 ??? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ??? 14 ??? ? = 1.0mhz parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ??? ??? v v ge = 0v, i c = 1.0 ma v (br)ecs emitter-to-collector breakdown voltage  18 ??? ??? v v ge = 0v, i c = 1.0 a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.63 ??? v/c v ge = 0v, i c = 1.0 ma ??? ??? 1.7 i c = 15a v ge = 15v v ce(on) collector-to-emitter saturation voltage ??? ??? 2.2 v i c = 28a see fig.2, 5 ??? ??? 2.7 i c = 15a , t j = 125c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 1.0 ma ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/c v ce = v ge , i c = 250 a g fe forward transconductance  14 ??? ??? s v ce 15v, i c = 15a ??? ??? 50 v ge = 0v, v ce = 480v ??? ??? 1000 v ge = 0v, v ce = 480v, t j = 125c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) i ces zero gate voltage collector current  switching characteristics @ t j = 25c (unless otherwise specified)   pulse width 80s; duty factor 0.1%.  pulse width 5.0s, single shot. notes:  repetitive rating; v ge = 20v, pulse width limited by max. junction temperature. ( see fig. 13b )  v cc = 80%(v ces ), v ge = 20v, l = 100h, r g = 7.5 ? , (see fig. 13a)
www.irf.com 3 IRG4MC30F fig. 1 - typical load current vs. frequency (for square wave, i=i rms of fundamental; for triangular wave, i=i pk ) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 1000 5 10 15 20 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 150 c j 1 10 100 1000 0.1 1 10 v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c v = 15v 20s pulse width ge t = 25 c j t = 150 c j 0.1 1 10 100 f , frequency ( khz ) 0 10 20 30 40 l o a d c u r r e n t ( a ) for both: duty cycle : 50% tj = 125c tsink = 90c gate drive as specified power dissipation = 19w triangular wave: clamp voltage: 80% of rated 60% of rated voltage i deal di odes square wave:
4 www.irf.com IRG4MC30F fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 5 10 15 20 25 30 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 1.0 1.5 2.0 2.5 v c e , c o l l e c t o r - t o e m i t t e r v o l t a g e ( v ) i c = 30a v ge = 15v 80s pulse width i c = 15a i c = 7.5a
www.irf.com 5 IRG4MC30F fig. 10 - typical switching losses vs. junction temperature fig. 9 - typical switching losses vs. gate resistance fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 7 - typical capacitance vs. collector-to-emitter voltage 0 10 20 30 40 50 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 15a cc c 1 10 100 0 400 800 1200 1600 2000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res 300v 0 10 20 30 40 50 r g , gate resistance ( ? ) 1.35 1.40 1.45 1.50 1.55 t o t a l s w i t c h i n g l o s s e s ( m j ) v cc = 480v v ge = 15v t j = 25c i c = 15a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.1 1 10 100 t o t a l s w i t c h i n g l o s s e s ( m j ) r g = 7.5 ? v ge = 15v v cc = 480v i c = 30a i c = 15a i c = 7.5a
6 www.irf.com IRG4MC30F fig. 12 - turn-off soa fig. 11 - typical switching losses vs. collector-to-emitter current 0.1 1 10 100 1000 v ce , collector-to-emitter voltage (v) 1 10 100 1000 i c , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) v ge = 20v t j = 125 safe operating area 5 10 15 20 25 30 i c , collector current (a) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 t o t a l s w i t c h i n g l o s s e s ( m j ) r g = 7.5 ? tj = 150c v ge = 15v v cc = 480v 125c
www.irf.com 7 IRG4MC30F       
d.u.t. 50v l v * c  * driver same type as d.u.t.; vc = 80% of vce(max) * note: due to the 50v power supply, pulse width and inductor will increase to obtain rated id. 1000v fig. 13a - clamped inductive load test circuit fig. 13b - pulsed collector current test circuit 480f 960v    t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% v c i c e on e off ts on off e = (e +e )   fig. 14b - switching loss waveforms 50v driver* 1000v d.u.t. i c c v    l fig. 14a - switching loss test circuit  
 
8 www.irf.com IRG4MC30F case outline and dimensions ? to-254aa 3.81 [.150] 0.12 [.005] 1.27 [.050] 1.02 [.040] 6.60 [.260] 6.32 [.249] c 14.48 [.570] 12.95 [.510] 3x 0.36 [.014] b a 1.14 [.045] 0.89 [.035] 2x 3.81 [.150] 20.32 [.800] 20.07 [.790] 13.84 [.545] 13.59 [.535] 3.78 [.149] 3.53 [.139] 17.40 [.685] 16.89 [.665] a 123 13.84 [.545] 13.59 [.535] 0.84 [.033] max. b caution beryllia warning per mil-prf-19500 package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium. 2. all dimensions are shown in millimeters [inches]. 1. dimensioning & tolerancing per asme y14.5m-1994. 4. conforms to jedec outline to-254aa. 3. controlling dimension: inch. not es :  
   
   
  
ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 01/2013


▲Up To Search▲   

 
Price & Availability of IRG4MC30F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X