![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
december 2011 doc id 022380 rev 1 1/53 AN3994 application note managing the best in cla ss mdmesh? v and mdmesh? ii super junction technologies: driving and layout key notes introduction one of the bigger challenges of the 21 st century is to deal with the growing need for power and, at the same time, the necessity of product compactness. the new mdmesh? v series from stmicroelectronics, based on the super junction concept, meets these targets by offering an extremely low r ds(on) value in a given package, unobtainable in standard hv mosfets. in addition to the dramatic reduction of r ds(on) , super junction mosfets are extremely fast in transients and this may lead to some issues when a better performing technology replaces an older version on the same board with the same driving network. the two main components in the st super junction mosfet family (mdmesh? ii and mdmesh? v) are analyzed and compared in terms of energy losses, voltage, and current rates. it is shown how the external driving network impacts on their performances. furthermore, a separate section is dedicated to the layout parasitic effects and their impact on mosfet behavior. it is clear in the end that layout can be crucial, especially when managing very fast transients, and it must be carefully planned in order to help the mosfet exploit its best potential. www.st.com
contents AN3994 2/53 doc id 022380 rev 1 contents 1 st multidrain technology evolut ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 parasitic capacitances overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 mosfet standard turn-on and turn-off analysi s . . . . . . . . . . . . . . . . . 11 4 gate charge curve impact on dynamic r esponses . . . . . . . . . . . . . . . 15 5 latest st md ii and md v technology at a glance . . . . . . . . . . . . . . . . 20 6 md ii and md v: which is t he lowest loss one? . . . . . . . . . . . . . . . . . . 21 6.1 stb42n65m5 vs. stw48nm60n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 stp35n65m5 vs. stb36nm60n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 stp21n65m5 vs. stp24nm60n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.4 stp16n65m5 vs. stp18nm60n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.5 comments about energy on comparison . . . . . . . . . . . . . . . . . . . . . . . . 33 6.6 comments about energy off comparison . . . . . . . . . . . . . . . . . . . . . . . 33 7 mosfet critical paramete rs in high switching environments . . . . . . 36 7.1 parasitic inductance influence on switching losses . . . . . . . . . . . . . . . . . 36 7.2 common source inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.3 minimizing common source inductance: layout optimization and kelvin source connection on stw77n65m5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.4 minimizing common s ource inductance impac t at turn-off: negative v gmoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.5 switching loop induct ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 AN3994 list of figures doc id 022380 rev 1 3/53 list of figures figure 1. standard hv mosfet device cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 2. md device cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 3. silicon ideal limit, sj limit and st md v position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 4. st?s hv technology evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 5. n-channel power mosfet structure and intrinsic capacitances . . . . . . . . . . . . . . . . . . . . . 8 figure 6. equivalent model of power mosfet intrinsic capacitances . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 7. clamped inductive load test circuit used to carry out the dynamic tests on the mosfets 10 figure 8. turn-on of a mosfet in a clamped inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 9. equivalent capacitive model of a mosfet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 10. turn-off of a mosfet in a clamped inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 11. vg(t) curve measured on stb42nm60n @16 a, 400 v, ig=1.5 ma . . . . . . . . . . . . . . . . . 17 figure 12. vg(t) curve measured on stw48nm60n @16 a, 400 v, ig=1.5 ma . . . . . . . . . . . . . . . . 17 figure 13. turn-on of stb42n65m5 @16 a, 400 v, 47 w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 14. turn-on of stw48nm60n @16 a, 400 v, 47 w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 15. turn-off of stb42n65m5 @16 a, 400 v, 47 w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 16. turn-off of stw48nm60n @16 a, 400 v, 47 w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 17. minimum rds(on) per package achievable by md ii and md v . . . . . . . . . . . . . . . . . . . . 20 figure 18. stb42n65m5 vs. stw48nm60n eon @ 8 a/16 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 19. stb42n65m5 vs. stw48nm60n di/dt at turn-on @ 8 a/16 a, 400 v . . . . . . . . . . . . . . . . 21 figure 20. stb42n65m5 vs. stw48nm60n dv/dt at turn-on @ 8 a/16 a 400 v . . . . . . . . . . . . . . . . 22 figure 21. stb42n65m5 vs. stw48nm60n zoom of dv/dt at turn-on @ 8 a/16 a 400 v . . . . . . . . . 22 figure 22. stb42n65m5 vs. stw48nm60n eoff @ 8 a/16 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 23. stb42n65m5 vs. stw48nm60n di/dt at turn-off @ 8 a/16 a, 400 v . . . . . . . . . . . . . . . . 23 figure 24. stb42n65m5 vs. stw48nm60n dv/dt at turn-off @ 8 a/ 16 a, 400 v . . . . . . . . . . . . . . . 24 figure 25. stp35n65m5 vs. stb36nm60n eon @ 7.5 a/15 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . 24 figure 26. stp35n65m5 vs. stb36nm60n di/dt at turn-on @ 7.5 a/15 a, 400 v . . . . . . . . . . . . . . . 25 figure 27. stp35n65m5 vs. stb36nm60n dv/dt at turn-on @ 7.5 a/15 a 400 v . . . . . . . . . . . . . . . 25 figure 28. stp35n65m5 vs. stb36nm60n eoff @ 7.5 a/15 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . 26 figure 29. stp35n65m5 vs. stb36nm60n di/dt at turn-off @ 7.5 a/15 a, 400 v . . . . . . . . . . . . . . . 26 figure 30. stp35n65m5 vs. stb36nm60n dv/dt at turn-off @ 7.5 a/15 a, 400 v . . . . . . . . . . . . . . 27 figure 31. stp21n65m5 vs. stp24nm60n eon @ 4 a/ 8 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 32. stp21n65m5 vs. stp24nm60n di/dt at turn-on @ 4 a/8 a, 400 v . . . . . . . . . . . . . . . . . 28 figure 33. stp21n65m5 vs. stp24nm60n dv/dt at turn-on @ 4 a/8 a, 400 v . . . . . . . . . . . . . . . . . 28 figure 34. stp21n65m5 vs. stp24nm60n eoff @ 4 a/8 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 35. stp21n65m5 vs. stp24nm60n di/dt at turn-off @ 4 a/8 a, 400 v . . . . . . . . . . . . . . . . . 29 figure 36. stp21n65m5 vs. stp24nm60n dv/dt at turn-off @ 4 a/8 a, 400 v . . . . . . . . . . . . . . . . . 30 figure 37. stp16n65m5 vs. stp18nm60n eon @ 3 a/6 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 38. stp16n65m5 vs. stp18nm60n di/dt at turn-on @ 3 a/ 6 a, 400 v . . . . . . . . . . . . . . . . . 31 figure 39. stp16n65m5 vs. stp18nm60n dv/dt at turn-on @ 3 a/6 a, 400 v . . . . . . . . . . . . . . . . . 31 figure 40. stp16n65m5 vs. stp18nm60n eoff @ 3 a/6 a, 400 v . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 41. stp16n65m5 vs. stp18nm60n di/dt at turn-off @ 3 a/6 a, 400 v . . . . . . . . . . . . . . . . . 32 figure 42. stp16n65m5 vs. stp18nm60n dv/dt at turn-off @ 3 a/6 a, 400 v . . . . . . . . . . . . . . . . . 33 figure 43. equivalent capacitive model of a mosfet with parasitic inductances at turn-on . . . . . . . 36 figure 44. turn-on of stw77n65m5@400 v, 13 a, 25 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 figure 45. equivalent driving circuit of a mosfet at turn-on with parasitic source inductance . . . . . 38 figure 46. simplified equivalent series resonant model of the driving circuit of a mosfet . . . . . . . . 39 figure 47. gate driving and main switching loops for a mosfet in a boost-like topology . . . . . . . 40 figure 48. stw77 energy on difference between the standard layout and the optimized layout . . . 41 figure 49. stw77 energy off difference between the standard layout and the optimized layout. . . 41 list of figures AN3994 4/53 doc id 022380 rev 1 figure 50. stw77n65m5 eoff @ 20 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . 42 figure 51. stw77n65m5 eoff @ 20 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . 42 figure 52. stw77n65m5 eoff @ 20 a, 2.2 w with optimized common path . . . . . . . . . . . . . . . . . . . 42 figure 53. stw77n65m5 eoff @ 40 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . 43 figure 54. stw77n65m5 eoff @ 40 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . 43 figure 55. stw77n65m5 eoff @ 40 a, 2.2 w, 400 v with optimized common path . . . . . . . . . . . . . 43 figure 56. stw77n65m5 eon@20 a, 2.2 w with no n-optimized common path . . . . . . . . . . . . . . . . 44 figure 57. stw77n65m5 eon@20 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . . 44 figure 58. stw77n65m5 eon@20 a, 2.2 w with optimized common path . . . . . . . . . . . . . . . . . . . . 44 figure 59. stw77n65m5 eon@20 a, 2.2 w with optimized common path . . . . . . . . . . . . . . . . . . . . 44 figure 60. stw77n65m5 eon@40 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . . 45 figure 61. stw77n65m5 eon@40 a, 2.2 w with non-optimized common path. . . . . . . . . . . . . . . . . 45 figure 62. stw77n65m5 eon@40 a, 2.2 w with optimized common path . . . . . . . . . . . . . . . . . . . . 45 figure 63. stw77n65m5 eon@40 a, 2.2 w with optimized common path . . . . . . . . . . . . . . . . . . 45 figure 64. schematic of 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 65. stw77n65m5 energy on difference betw een the optimized layout (3-pin) and 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 66. stw77n65m5 energy on difference betw een the optimized layout (3-pin) and 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 67. stw77n65m5 energy off difference between the optimized layout (3-pin) and 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 68. stw77n65m5 eoff@20 a, 2.2 w, 400 v 4-pin solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 69. stw77n65m5 eon@20 a, 2.2 w 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 70. stw77n65m5 eon @20 a, 2.2 w 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 71. stw77n65m5 eon@40 a, 2.2 w 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 figure 72. stw77n65m5 eon@40 a, 2.2 w 4-pin solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 figure 73. basic driving stage of a power mosfet at turn-off with negative vgm . . . . . . . . . . . . . . 49 figure 74. stw77n65m5 eoff@52 a, 4.7 w, 400 v, vgmoff=-5 v . . . . . . . . . . . . . . . . . . . . . . . . . . 50 figure 75. stw77n65m5 eoff@52 a, 4.7 w, 400 v, vgmoff=-5 v . . . . . . . . . . . . . . . . . . . . . . . . . . 50 AN3994 st multidrain technology evolution doc id 022380 rev 1 5/53 1 st multidrain technology evolution at the beginning of 2000, stmicroelectronics introduced the super junction mosfet technology to the market, the basic structure of which is clear from figure 1 : figure 1. standard hv mosfet device cross section figure 2. md device cross section as concerns standard mosfet technology, designers understand that r ds(on) * area and breakdown voltage are associated with a theoretical limit which strictly depends on the material and can not be overcome. development efforts of the major suppliers have mainly focused on making the r ds(on) * area as close as possible to this physical limit, by reducing the most important contributions of a high voltage power mosfet to the total r ds(on) . ! - v 3 o u r c e - e t a l " o d y . r e g i o n ! $ r a i n 3 u b s t r a t e " ! - v 3 o u r c e - e t a l " o d y 3 u b s t r a t e " ! $ r a i n 1 s f h j p o / s f h j p o - $ m e s h ? st multidrain technology evolution AN3994 6/53 doc id 022380 rev 1 figure 3. silicon ideal limit, sj limit and st md v position r jfet and r channel were significantly lowered by increasing the cell density and optimizing their structure, and by also reducing, at the same time, the channel length. thanks to the continuos optimization of resistivity and the thickness of n-drift, the r epy contribution has been lowered, but the need to guarantee the same breakdown voltage and avalanche capability establishes the well kn own ?silicon ideal limit?, as shown in figure 3 . the md concept, based on sj technology, has overcome this limit: through the p-doped column insertion under the devi ce strips, it has been possible to significantly lower the resistivity of the epitaxial n region without compromising the breakdown capability and enabling a dramatic reduction in r ds(on) : the particular p-column geometry and the alternating of p regions with n regions allows a constant electric field in the whole drain volume despite the low resistivity in the conducting region: as a direct consequence, it was possible to achieve an r ds(on) * area reduction, previously not possible, by keeping the same voltage capability. from this starting point, md technology moved towards r ds(on) continuous optimization, as seen in figure 4 . ! - v 0 ' 6 l , * % 7 6 l , * % 7 6 l 6 - 3 / l p l w " r e a k d o w n v o l t a g e 6 2 |