Part Number Hot Search : 
AE9953 BCM4500 1117S E2102S 330M10 XXXAG LJ64H051 B2412
Product Description
Full Text Search
 

To Download 10-FZ06NBA100SG10-M305L58 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FZ06NBA100SG10-M305L58 flownpc 0 600v/100a symmetric booster ult ra high switching frequency low inductance layout solar inverter ups 10-FZ06NBA100SG10-M305L58 tj=25c, unless otherwise specified parameter symbol value unit boost inverse diode t h =80c 17 t c =80 c 24 t h =80 c 33 t c =80 c 50 boost igbt t h =80c 89 t c =80 c 118 t j 150 c v ce <=v c es t h =80c 177 t c =80 c 268 t sc t j 150 c 5 s v cc v ge = 15v 400 v 20 6 50 300 t p limited by t j max a c a t j =t j max t j = t j max t p limited by t j max colle ctor-emitter break down voltage pulsed collector current dc collector current v ces i cpulse i c 175 features flow0 12mm housing target applications schematic maximum repetitive forward current types maximum ratings condition p tot v t j =t j max 175 20 t j =t j m ax v w a a powe r dissipation per diode dc forward current i f power dissipation per igbt v ge t j max p tot short circuit ratings gate - emitter peak voltage turn off safe operating area v w c peak repetitive reverse voltage 600 v rrm maximum junction temperature t j max turn off safe operating area 300 a i frm 1 revi sion: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost fwd t h =80c 79 t c =80 c 102 t h =80 c 102 t c =8 0 c 155 thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm 175 c t j max v 650 rep etitive peak forward current maximum junction temperature peak repetitive reverse voltage i frm w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f t c =100c t j =t j max v rrm -40+(tjmax - 25) c stora ge temperature t stg -40+125 c clea rance insulation voltage creepage distance t op operation temperature under switching condition 200 2 revi sion: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,25 1,73 1,95 tj=125c 1,60 coupled thermal resistance inverter transistor-diode r thjh 2,87 tj=25c 4,2 5,1 5,6 tj=125c tj=25c 1,38 1,86 2,22 tj=125c 2,04 tj=25c 0,0056 tj=125c tj=25c 300 tj=125c tj=25c 31 tj=125c 30 tj=25c 21 tj=125c 23 tj=25c 310 tj=125c 344 tj=25c 21 tj=125c 12 tj=25c 0,92 tj=125c 1,52 tj=25c 0,85 tj=125c 1,18 thermal resistance chip to heatsink per chip r thjh phase-change material 0,54 k/w tj=25c 2,29 tj=125c 1,69 tj=25c 20 tj=125c tj=25c 58 tj=125c 98 tj=25c 24 tj=125c 77 tj=25c 0,91 tj=125c 3,34 di(rec)max tj=25c 10422 /dt tj=125c 4048 tj=25c 0,12 tj=125c 0,58 thermal resistance chip to heatsink per chip r thjh phase-change material 0,93 k/w i r 350 v 10 ? 22000 5 100 650 65 0 0 70 480 25 350 70 100 100 0,0016 vce=vge c ies q rr t rr q gate rgon=4 ? t d(on) c oss rgoff=4 ? f=1mhz phase-c hange material v f reverse transfer capacitance diode forward voltage gate charge erec i rrm c rss v f peak reverse recovery current input boost fwd e on e off t r t d(off) t f input capacitance rise time turn-on energy loss per pulse v ge(th) v ce(sat) i ces r gint i ges output capacitance turn-off energy loss per pulse collector-emitter saturation voltage gate-emitter leakage current fall time turn-off delay time turn-on delay time thermal resistance chip to heatsink per chip input boost inverse diode characteristic values value cond i tions tj=25c tj=25 c reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge integrated gate resistor input boost igbt gate emitter threshold voltage collect or-emitter cut-off current incl. diode 0 15 c mws a/s 230 mw/k 2 t=25c p mw 200 % t=25c t=25c thermistor power dissipation constant -5 t=25 c ? r/r r100=1486 ? r rgon=4 ? 20 15 15 0 0 1 8 0 v mws pf nc ma v ns v ? a a k/w na no n e ns 6200 630 b(25/50) tol. 3% b-value b(25/100) tol. 3% vincotech ntc reference 3950 k b 3998 k t=25c t=25c rated resistance reserve leakage current b-valu e power dissipation deviation of r25 3 rev ision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 1 boost inverse diode figure 2 boost inverse diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = tp / t r thjh = 2,87 k /w figure 3 boost inverse diode figure 4 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost inverse 0 10 20 30 40 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 70 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) 4 rev ision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 5 boost igbt figure 6 boost igbt typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 125 c v ge from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 7 boost i gbt figure 8 boost fwd typical transfer characteristics typical diode forward current as i d = f(v gs ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ds = 10 v boo st 0 50 100 150 200 250 300 350 400 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 2 4 6 8 10 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 v ce (v) i c (a) 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 v ce (v) i c (a) 5 rev ision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 9 boost igbt figure 10 boost igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 1 5 v r gon = 4 ? i c = 71 a r gof f = 4 ? figure 1 1 boost i gbt figure 12 boost igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 1 5 v r gon = 4 ? i c = 71 a r gof f = 4 ? boost e rec low t 0 0,2 0,4 0 ,6 0,8 1 0 30 60 90 120 150 i c (a) e (mws) e rec high t e rec high t e rec low t 0 0,2 0,4 0 ,6 0,8 0 2 4 6 8 10 12 14 16 18 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1, 5 2 2 ,5 3 0 30 60 90 120 150 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1, 5 2 2 ,5 3 3,5 0 2 4 6 8 10 12 14 16 18 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 6 revis i on: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 13 boost igbt figure 14 boost igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v c e = 350 v v ce = 3 50 v v ge = 15 v v ge = 1 5 v r gon = 4 ? i c = 71 a r gof f = 4 ? figure 1 5 boost fw d figure 16 boost fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 71 a r g on = 4 ? v ge = 15 v boo st t doff t f t don t r 0,001 0,01 0, 1 1 0 30 60 90 120 150 i d (a) t ( m s) t f t don t r 0,001 0,01 0, 1 1 0 5 10 15 20 r g ( ? ) t ( m s) t doff t rr high t t rr low t 0 0,03 0, 06 0,09 0,12 0,15 0 4 8 12 16 20 r gon ( ? ) t rr ( m s) t rr high t t rr low t 0 0,02 0, 04 0,06 0,08 0,1 0 30 60 90 120 150 i c (a) t rr ( m s) 25 / 125 25 / 125 7 revis i on: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 17 boost fwd figure 18 boost fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c tj = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 71 a r gon = 4 ? v ge = 15 v figure 19 boost fw d figure 20 boost fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 71 a r g on = 4 ? v ge = 15 v boo st i rrm high t i rrm low t 0 30 60 90 12 0 150 0 4 8 12 16 20 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 1 2 3 4 0 4 8 12 16 2 0 r gon ( ? ) q rr ( m c) i rrm high t i rrm low t 0 30 60 90 12 0 150 0 30 60 90 120 150 i c (a) i rrm (a) q rr low t 0 1 2 3 4 5 0 30 60 90 1 20 150 i c (a) q rr ( c) q rr high t 25 / 125 25 / 12 5 2 5 / 125 25 / 125 8 revis i on: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 21 boost fwd figure 22 boost fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c tj = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 71 a r gon = 4 ? v ge = 15 v figure 23 boost i gbt figure 24 boost fwd igbt transient thermal impedance fwd tr ansient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,54 k /w r thjh = 0,93 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 9,03e-02 1,44e+00 6,93e-02 3,04e+00 1,74e-01 1,82e-01 1,64e-01 4,75e-01 1,93e-01 5,93e-02 5,02e-01 9,73e-02 5,65e-02 9,38e-03 8,20e-02 2,48e-02 2,20e-02 1,07e-03 6,58e-02 4,90e-03 4,43e-02 1,04e-03 boost 0 3000 6000 9000 12000 15000 18000 0 4 8 12 16 20 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /d t t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 2000 4000 6000 8000 10000 12000 0 30 60 90 120 150 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /d t 25 / 125 25 / 125 9 revis i on: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 25 boost igbt figure 26 boost igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 o c t j = 175 oc v g e = 15 v figure 27 boost fw d figure 28 boost fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost 0 50 100 150 200 250 300 350 0 50 100 150 200 th ( o c) p tot (w) 0 30 60 90 120 150 0 50 100 150 200 th ( o c) i c (a) 0 50 100 150 200 0 50 100 150 200 t h ( o c) p tot (w) 0 25 50 75 100 125 0 50 100 150 200 t h ( o c) i f (a) 10 re vision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 2 9 boost i gbt figure 30 boost igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i d = f(v ds ) v gs = f(qg) at at d = s ingle pulse i c = 100 a t h = 8 0 oc v ge = 15 v t j = t jm ax oc figure 3 1 boost i gbt reverse bias safe operating area i c = f(v ce ) at t j = 12 5 oc u c cminus =u ccplus r goff = 4 ? boost v ce (v) i c (a) 10 3 10 0 1 10 1 10 2 10 3 10 0 1 100us 1ms 10ms 100ms dc 10 2 10 1 0 2 4 6 8 10 12 14 16 0 100 200 300 400 500 600 700 qg (nc) u ge (v) 120v 480v 0 50 100 150 200 250 300 350 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 11 re vision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 32 boost igbt figure 33 boost igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 4 00 v v c e 4 00 v t j 15 0 oc t j = 25 oc bo ost 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 250 500 750 1000 1250 1500 10 12 14 16 18 20 v ge (v) i c (sc) 12 re vision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 34 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8 0 00 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? 13 re vision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 t j 125 c r gon 4 ? r goff 4 ? figure 1 b oost i gbt figure 2 boost igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v ge ( 0 %) = 0 v v ge (1 00%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 71 a i c (1 00%) = 71 a t dof f = 0,34 s t do n = 0,03 s t eo ff = 0,42 s t eo n = 0,16 s figur e 3 boost i gbt figure 4 boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 71 a i c (1 00%) = 71 a t f = 0, 012 s t r = 0,023 s s witching definitions buck igbt general conditions = = = i c 1% v ce 90% v ge 90% -50 -25 0 25 50 7 5 100 125 150 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 15 0 200 250 3,95 4 4,05 4,1 4,15 4,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,2 0,25 0,3 0,35 0,4 0,45 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 15 0 200 250 4 4,03 4,06 4,09 4,12 4,15 time(us) % tr v ce i c 14 rev i sion: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 5 boost igbt figure 6 boost igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 24,75 kw p on (100%) = 24,75 kw e off (100%) = 1,18 m j e on (100%) = 1,52 m j t eoff = 0,42 s t eo n = 0,16 s figur e 7 boost fw d turn-off switching waveforms & definition of t rr v d (100%) = 350 v i d ( 100%) = 71 a i rrm (100%) = -98 a t rr = 0,08 s sw itching definitions buck igbt i c 1% v ge 90% -25 0 25 50 75 1 0 0 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 10 0 125 150 3,95 4 4,05 4,1 4,15 4,2 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 4 4,05 4,1 4,15 4,2 time(us) % i d v d fitted 15 rev i sion: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 figure 8 boost fwd figure 9 boost fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 71 a p re c (100%) = 24,75 kw q rr (100%) = 3,34 c e re c (100%) = 0,58 m j t qrr = 0,15 s t er ec = 0,15 s sw itching definitions buck igbt t qrr -150 -100 - 5 0 0 50 100 150 4 4,05 4,1 4,15 4,2 4,25 time(us) % i d q rr -25 0 25 50 75 100 125 4 4,05 4,1 4,15 4,2 4,25 time(us) % p rec e rec t erec 1 6 r e v i sion: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06NBA100SG10-M305L58 m305l58 m305l58 outline pinout ordering code & marking ordering code and marking - outline - pinout 17 re vision: 1 copyright by vincotech
10-FZ06NBA100SG10-M305L58 disclaimer life s upport policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 18 rev ision: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-FZ06NBA100SG10-M305L58

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X