![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
this is information on a product in full production. january 2013 doc id 11972 rev 9 1/35 35 ts4909 dual mode low power 150 mw st ereo headphone amplifier with capacitor-less and single-ended outputs datasheet ? production data features no output coupling capacitors necessary pop-and-click noise reduction circuitry operating from v cc = 2.2v to 5.5v standby mode active low output power: ? 158 mw at 5 v, into 16 with 1% thd+n max (1 khz) ? 52 mw at 3.0 v into 16 with 1% thd+n max (1 khz) ultra-low current consumption: 2.0 ma typ. at 3v ultra-low standby consumption: 10 na typ. high signal-to-noise ratio: 105 db typ. at 5 v high crosstalk immunity: 110 db (f = 1 khz) for single-ended outputs psrr: 72 db (f = 1 khz), inputs grounded, for phantom ground outputs low t wu : 50 ms in pg mode, 100 ms in se mode available in lead -free dfn10 3 x 3 mm applications headphone amplifier mobile phone pda, portable audio player description the ts4909 is a stereo audio amplifier designed to drive headphones in portable applications. the integrated phantom ground is a circuit topology that eliminates the heavy output coupling capacitors. this is of primary importance in portable applications where space constraints are very high. a single-ended configuration is also available, offering even lower power consumption because the phantom ground can be switched off. pop-and-click noise during switch-on and switch- off phases is eliminated by integrated circuitry. specially designed for app lications requiring low power supplies, the ts4909 is capable of delivering 31 mw of continuous average power into a 32 load with less than 1% thd+n from a 3 v power supply. featuring an active low standby mode, the ts4909 reduces the supply current to only 10 na (typ.). the ts4909 is unity gain stable and can be configured by external gain-setting resistors. pin connections (top view) dfn10 (3 x 3) 1 2 3 4 7 10 9 8 5 6 1 2 3 4 7 10 9 8 5 6 vin1 vin2 stdby bypass se/phg vdd vout1 vout3 vout2 gnd vin1 vin2 bias gnd vout1 vout2 vout3 stdby se/phg functional block diagram bypass vdd www.st.com
contents ts4909 2/35 doc id 11972 rev 9 contents 1 typical application sche matics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 6 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 gain using the typical applic ation schematics . . . . . . . . . . . . . . . . . . . . . 24 4.4 power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.1 single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.2 phantom ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4.3 total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5 decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.6 wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.7 pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.8 standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ts4909 list of figures doc id 11972 rev 9 3/35 list of figures figure 1. typical applications for the ts4909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 figure 2. open-loop frequency response, r l = 1 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 figure 3. open-loop frequency response, r l = 100 , c l = 400 pf . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 4. open-loop frequency response, r l = 1 m , c l = 100 pf . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 5. open-loop frequency response, r l = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 figure 6. open-loop frequency response, r l = 16 , c l = 400 pf . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 7. output swing vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 8. thd+n vs. output power, phg, f = 1 khz, r l = 16 , av = 1. . . . . . . . . . . . . . . . . . . . . . 10 figure 9. thd+n vs. output power, phg, f = 20 khz, r l = 16 , av = 1. . . . . . . . . . . . . . . . . . . . . 10 figure 10. thd+n vs. output power, phg, f = 1 khz, r l = 32 , av = 1. . . . . . . . . . . . . . . . . . . . . . 10 figure 11. thd+n vs. output power, phg, f = 20 khz, r l = 32 , av = 1. . . . . . . . . . . . . . . . . . . . . 10 figure 12. thd+n vs. output power, se, f = 1 khz, r l = 16 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . 10 figure 13. thd+n vs. output power, se, f = 20 khz, r l = 16 , av = 1 . . . . . . . . . . . . . . . . . . . . . . 10 figure 14. thd+n vs. output power, se, f = 1 khz, r l = 32 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . 11 figure 15. thd+n vs. output power, se, f = 20 khz, r l = 32 , av = 1 . . . . . . . . . . . . . . . . . . . . . . 11 figure 16. thd+n vs. output power, phg, f = 1 khz, r l = 16 , av = 4. . . . . . . . . . . . . . . . . . . . . . 11 figure 17. thd+n vs. output power, phg, f = 20 khz, r l = 16 , av = 4. . . . . . . . . . . . . . . . . . . . . 11 figure 18. thd+n vs. output power, phg, f = 1 khz, r l = 32 , av = 4. . . . . . . . . . . . . . . . . . . . . . 11 figure 19. thd+n vs. output power, phg, f = 20 khz, r l = 32 , av = 4. . . . . . . . . . . . . . . . . . . . . 11 figure 20. thd+n vs. output power, se, f = 1 khz, r l = 16 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12 figure 21. thd+n vs. output power, se, f = 20 khz, r l = 16 , av = 4 . . . . . . . . . . . . . . . . . . . . . . 12 figure 22. thd+n vs. output power, se, f = 1 khz, r l = 32 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12 figure 23. thd+n vs. output power, se, f = 20 khz, r l = 32 , av = 4 . . . . . . . . . . . . . . . . . . . . . . 12 figure 24. thd+n vs. frequency, phg, r l = 16 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 25. thd+n vs. frequency, phg, r l = 32 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 26. thd+n vs. frequency, se, r l = 16 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 27. thd+n vs. frequency, se, r l = 32 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 28. thd+n vs. frequency, phg, r l = 16 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 29. thd+n vs. frequency, phg, r l = 32 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 30. thd+n vs. frequency, se, r l = 16 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 31. thd+n vs. frequency, se, r l = 32 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 32. output power vs. pow er supply voltage, phg, r l = 16 , f = 1 khz. . . . . . . . . . . . . . . . . 14 figure 33. output power vs. pow er supply voltage, phg, r l = 32 , f = 1 khz. . . . . . . . . . . . . . . . . 14 figure 34. output power vs. pow er supply voltage, se, r l = 16 , f = 1 khz . . . . . . . . . . . . . . . . . . 14 figure 35. output power vs. pow er supply voltage, se, r l = 32 , f = 1 khz . . . . . . . . . . . . . . . . . . 14 figure 36. output power vs. load resistance, phg, vcc = 2.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 37. output power vs. load resistance, se, vcc = 2.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 38. output power vs. load resistance, phg, vcc = 3 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 39. output power vs. load resistance, se, vcc = 3 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 40. output power vs. load resistance, phg, vcc = 5 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 41. output power vs. load resistance, se, vcc = 5 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 42. power dissipation vs. output power, phg, vcc = 2. 6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 43. power dissipation vs. output power, se, vcc = 2.6 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 44. power dissipation vs. output power, phg, vcc = 3 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 45. power dissipation vs. output power, se, vcc = 3 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 46. power dissipation vs. output power, phg, vcc = 5 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 47. power dissipation vs. output power, se, vcc = 5 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 48. crosstalk vs. frequency, se, vcc = 5 v, r l = 16 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16 list of figures ts4909 4/35 doc id 11972 rev 9 figure 49. crosstalk vs. frequency, se, vcc = 5 v, r l = 32 , av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 50. crosstalk vs. frequency, se, vcc = 5 v, r l = 16 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 51. crosstalk vs. frequency, se, vcc = 5 v, r l = 32 , av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 52. crosstalk vs. frequency, phg, vcc = 5 v, av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 53. crosstalk vs. frequency, phg, vcc = 5 v, av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 54. snr vs. power supply voltage, phg, unweighted, av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 55. snr vs. power supply voltage, se, unweighted, av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 56. snr vs. power supply voltage, phg, a-weighted, av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 57. snr vs. power supply voltage, se, a-weighted, av = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 58. snr vs. power supply voltage, phg, unweighted, av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 59. snr vs. power supply voltage, se, unweighted, av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 60. snr vs. power supply voltage, phg, a-weighted, av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 61. snr vs. power supply voltage, se, a-weighted, av = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 62. power supply rejection ratio vs. frequency vs. vc c, phg . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 63. power supply rejection ratio vs. frequency vs. vcc, se . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 64. power supply rejection ratio vs. frequency vs. ga in, phg . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 65. power supply rejection ratio vs. frequency vs. ga in, se . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 66. psrr vs. frequency vs. bypass capacitor, phg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 67. psrr vs. frequency vs. bypass capacitor, se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 68. current consumption vs. power supply voltage, phg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 69. current consumption vs. power supply voltage, se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 70. current consumption vs. standby voltage, vcc = 2.6 v, phg . . . . . . . . . . . . . . . . . . . . . . 20 figure 71. current consumption vs. standby voltage, vcc = 2.6 v, se . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 72. current consumption vs. standby voltage, vcc = 3 v, phg . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 73. current consumption vs. standby voltage, vcc = 3 v, se . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 74. current consumption vs. standby voltage, vcc = 5 v, phg . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 75. current consumption vs. standby voltage, vcc = 5 v, se . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 76. power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 77. higher cut-off frequency vs. feedback capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 78. lower cut-off frequency vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 figure 79. lower cut-off frequency vs. output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 80. current delivered by power supply voltage in single-ended configuration . . . . . . . . . . . . . 24 figure 81. current delivered by power supply voltage in phantom ground configuration . . . . . . . . . . 25 figure 82. typical wake-up time vs. bypass capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 83. internal equivalent circuit schematics of the ts4909 in standby mode . . . . . . . . . . . . . . . 28 figure 84. ts4909 footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 85. dfn10 3 x 3 pitch 0.5 mm exposed pad package mechanical drawing . . . . . . . . . . . . . . . 30 ts4909 typical application schematics doc id 11972 rev 9 5/35 1 typical application schematics figure 1. typical applications for the ts4909 table 1. application component information component functional description r in1,2 inverting input resistor that sets th e closed loop gain in conjunction with r feed . this resistor also forms a hi gh pass filter with c in (f c = 1 / (2 x pi x r in x c in )). c in1,2 input coupling capacitor that blocks the dc voltage at the amplifier?s input terminal. r feed1,2 feedback resistor that sets the closed loop gain in conjunction with r in . a v = closed loop gain = -r feed /r in . c b half supply bypass capacitor c s supply bypass capacitor that pr ovides power supply filtering. vin1 vin2 rin1 rin2 rfeed1 rfeed2 cin1 330nf cin2 bias gnd vcc cs 1 f 20k 20k 20k 330nf vout1 vout2 vout3 standby 20k phantom ground configuration single-ended configuration cout1 cout2 cb 1 f vin1 vin2 rin1 rin2 rfeed1 rfeed2 cin1 330nf cin2 bias gnd vcc cs 1 f 20k 20k 20k 330nf vout1 vout2 vout3 standby 20k cb 1 f se/ phg se/ phg absolute maximum ratings and operating conditions ts4909 6/35 doc id 11972 rev 9 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings symbol parameter value unit v cc supply voltage (1) 1. all voltage values are measur ed with respect to the ground pin. 6v v i input voltage -0.3v to v cc +0.3v v t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient dfn10 120 c/w p diss power dissipation (2) dfn10 2. p d is calculated with t amb = 25c, t junction = 150c. 1.79 w esd human body model (pin to pin) 2 kv esd machine model 220pf - 240pf (pin to pin) 200 v latch-up latch-up immunity (all pins) 200 ma lead temperature (soldering, 10 sec) 260 c output current 170 (3) 3. caution: this device is not protected in the event of abnormal operating conditions, such as for example, short-circuiting between any one output pi n and ground, between any one output pin and v cc , and between individual output pins. ma table 3. operating conditions symbol parameter value unit v cc supply voltage 2.2 to 5.5 v r l load resistor 16 t oper operating free air temper ature range -40 to + 85 c c l load capacitor r l = 16 to 100 r l > 100 400 100 pf v stby standby voltage input ts4909 in standby ts4909 in active state gnd v stby 0.4 (1) 1.35v v stby v cc 1. the minimum current consumption (i stby ) is guaranteed at ground for the whole temperature range. v v se/phg single-ended or phantom ground configuration voltage input ts4909 outputs in single-ended configuration ts4909 outputs in phantom ground configuration v se/phg =v cc v se/phg =0 v r thja thermal resistance junction-to-ambient dfn10 (2) 2. when mounted on a 4-layer pcb. 41 c/w ts4909 electrical characteristics doc id 11972 rev 9 7/35 3 electrical characteristics table 4. electrical characteristics at v cc = +5 v with gnd = 0 v and t amb = 25c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit i cc supply current no input signal, no load, single-ended no input signal, no load, phantom ground 2.1 3.1 3.2 4.8 ma i stby standby current no input signal, r l = 32 10 1000 na p out output power thd+n = 1% max, f = 1khz, r l = 32 , single-ended thd+n = 1% max, f = 1khz, r l = 16 , single-ended thd+n = 1% max, f = 1khz, r l = 32 , phantom ground thd+n = 1% max, f = 1khz, r l = 16 , phantom ground 60 95 60 95 88 158 85 150 mw thd+n to t a l harmonic distortion + noise (a v =-1) r l = 32 , p out = 60mw, 20hz f 20khz, single-ended r l = 16 , p out = 90mw, 20hz f 20khz, single-ended r l = 32 , p out = 60mw, 20hz f 20khz, phantom ground r l = 16 , p out = 90mw, 20hz f 20khz, phantom ground 0.3 0.3 0.3 0.3 % psrr power supply rejection ratio inputs grounded (1) , a v =-1, r l >=16 , c b =1 f, f = 217hz , v ripple = 200mvpp single-ended output referenced to phantom ground single-ended output referenced to ground 66 61 72 67 db i out max output current thd +n 1%, r l = 16 connected between out and v cc /2 140 ma v o output swing v ol : r l = 32 v oh : r l = 32 v ol : r l = 16 v oh : r l = 16 4.39 4.17 0.14 4.75 0.25 4.55 0.47 0.69 v snr signal-to- noise ratio a-weighted, a v =-1, r l = 32 , thd +n < 0.4%, 20hz f 20khz single-ended phantom ground 104 105 db cross- talk channel separation r l = 32 , a v =-1, phantom ground f = 1khz f = 20hz to 20khz r l = 32 , a v =-1, single-ended f = 1khz f = 20hz to 20khz -73 -68 -110 -90 db v oo output offset voltage phantom ground configurat ion, floating inputs, r feed =22k 520mv t wu wake-up time phantom ground configuration single-ended configuration 50 100 80 160 ms 1. guaranteed by design and evaluation. electrical characteristics ts4909 8/35 doc id 11972 rev 9 table 5. electrical characteristics at v cc = +3.0 v with gnd = 0 v, t amb = 25c (unless otherwise specified) (1) symbol parameter test conditions min. typ. max. unit i cc supply current no input signal, no load, single-ended no input signal, no load, phantom ground 2 2.8 2.8 4.2 ma i stby standby current no input signal, r l =32 10 1000 na p out output power thd+n = 1% max, f = 1khz, r l = 32 , single-ended thd+n = 1% max, f = 1khz, r l = 16 , single-ended thd+n = 1% max, f = 1khz, r l = 32 , phantom ground thd+n = 1% max, f = 1khz, r l = 16 , phantom ground 20 30 20 30 31 52 31 54 mw thd+n total harmonic distortion + noise (a v =-1) r l = 32 , p out = 25mw, 20hz f 20khz, single-ended r l = 16 , p out = 40mw, 20hz f 20khz, single-ended r l = 32 , p out = 25mw, 20hz f 20khz, phantom ground r l = 16 , p out = 40mw, 20hz f 20khz, phantom ground 0.3 0.3 0.3 0.3 % psrr power supply rejection ratio inputs grounded (2) , a v =-1, rl>=16 , c b =1 f, f = 217hz , v ripple = 200mvpp single-ended output referenced to phantom ground single-ended output referenced to ground 64 59 70 65 db i out max output current thd +n 1%, r l = 16 connected between out and v cc /2 82 ma v o output swing v ol : r l = 32 v oh : r l = 32 v ol : r l = 16 v oh : r l = 16 2.6 2.45 0.12 2.83 0.19 2.70 0.34 0.49 v snr signal-to- noise ratio a-weighted, a v =-1, r l = 32 , thd +n < 0.4%, 20hz f 20khz single-ended phantom ground 100 101 db cross- talk channel separation r l = 32 , a v =-1, phantom ground f = 1khz f = 20hz to 20khz r l = 32 , a v =-1, single-ended f = 1khz f = 20hz to 20khz -73 -68 -110 -90 db v oo output offset voltage phantom ground configuration, floating inputs, r feed =22k 520mv t wu wake-up time phantom ground configuration single-ended configuration 50 100 80 160 ms 1. all electrical values are guaranteed wi th correlation measurements at 2.6 and 5 v. 2. guaranteed by design and evaluation. ts4909 electrical characteristics doc id 11972 rev 9 9/35 table 6. electrical characteristics at v cc = +2.6 v with gnd = 0 v, t amb = 25c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit i cc supply current no input signal, no load, single-ended no input signal, no load, phantom ground 1.9 2.8 2.7 4 ma i stby standby current no input signal, r l =32 10 1000 na p out output power thd+n = 1% max, f = 1khz, r l = 32 , single-ended thd+n = 1% max, f = 1khz, r l = 16 , single-ended thd+n = 1% max, f = 1khz, r l = 32 , phantom ground thd+n = 1% max, f = 1khz, r l = 16 , phantom ground 15 22 15 22 23 38 23 39 mw thd+n to t a l harmonic distortion + noise (a v =-1) r l = 32 , p out = 20mw, 20hz f 20khz, single-ended r l = 16 , p out = 30mw, 20hz f 20khz, single-ended r l = 32 , p out = 20mw, 20hz f 20khz, phantom ground r l = 16 , p out = 30mw, 20hz f 20khz, phantom ground 0.3 0.3 0.3 0.3 % psrr power supply rejection ratio inputs grounded (1) , a v =-1, rl>=16 , c b =1 f, f = 217hz , v ripple = 200mvpp single-ended output referenced to phantom ground single-ended output referenced to ground 64 59 70 65 db i out max output current thd +n 1%, r l = 16 connected between out and v cc /2 70 ma v o output swing v ol : r l = 32 v oh : r l = 32 v ol : r l = 16 v oh : r l = 16 2.25 2.11 0.11 2.45 0.18 2.32 0.3 0.44 v snr signal-to- noise ratio a weighted, a v =-1, r l = 32 , thd +n < 0.4%, 20hz f 20khz single-ended phantom ground 99 100 db cross- talk channel separation r l = 32 , a v =-1, phantom ground f = 1khz f = 20hz to 20khz r l = 32 , a v =-1, single-ended f = 1khz f = 20hz to 20khz -73 -68 -110 -90 db v oo output offset voltage phantom ground configuration, floating inputs, r feed =22k 520mv t wu wake-up time phantom ground configuration single-ended configuration 50 100 80 160 ms 1. guaranteed by design and evaluation. electrical characteristics ts4909 10/35 doc id 11972 rev 9 figure 2. open-loop frequency response, r l = 1 m figure 3. open-loop frequency response, r l = 100 , c l = 400 pf 10 -1 10 10 3 10 5 10 7 -50 -25 0 25 50 75 100 125 150 -270 -225 -180 -135 -90 -45 0 45 90 gain phase rl=1m , t amb =25c gain (db) frequency (hz) phase () 10 -1 10 10 3 10 5 10 7 -100 -75 -50 -25 0 25 50 75 100 -270 -225 -180 -135 -90 -45 0 45 90 gain phase rl=100 , cl=400pf, t amb =25c gain (db) frequency (hz) phase () figure 4. open-loop frequency response, r l = 1 m , c l = 100 pf figure 5. open-loop frequency response, r l = 16 10 -1 10 10 3 10 5 10 7 -50 -25 0 25 50 75 100 125 150 -270 -225 -180 -135 -90 -45 0 45 90 gain phase rl=1m , cl=100pf, t amb =25c gain (db) frequency (hz) phase () 10 -1 10 10 3 10 5 10 7 -100 -75 -50 -25 0 25 50 75 100 -270 -225 -180 -135 -90 -45 0 45 90 gain phase rl=16 , t amb =25c gain (db) frequency (hz) phase () figure 6. open-loop frequency response, r l = 16 , c l = 400 pf figure 7. output swing vs. power supply voltage 10 -1 10 10 3 10 5 10 7 -100 -75 -50 -25 0 25 50 75 100 -270 -225 -180 -135 -90 -45 0 45 90 gain phase rl=16 , cl=400pf, t amb =25c gain (db) frequency (hz) phase () 23456 0 1 2 3 4 5 6 rl=16 t amb =25c v oh & v ol (v) power supply voltage (v) rl=32 ts4909 electrical characteristics doc id 11972 rev 9 11/35 figure 8. thd+n vs. output power, phg, f = 1 khz, r l = 16 , av = 1 figure 9. thd+n vs. output power, phg, f = 20 khz, r l = 16 , av = 1 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=1khz, rl=16 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=20khz, rl=16 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 10. thd+n vs. output power, phg, f = 1 khz, r l = 32 , av = 1 figure 11. thd+n vs. output power, phg, f = 20 khz, r l = 32 , av = 1 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=1khz, rl=32 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=20khz, rl=32 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 12. thd+n vs. output power, se, f = 1 khz, r l = 16 , av = 1 figure 13. thd+n vs. output power, se, f = 20 khz, r l = 16 , av = 1 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=1khz, rl=16 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=20khz, rl=16 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 electrical characteristics ts4909 12/35 doc id 11972 rev 9 figure 14. thd+n vs. output power, se, f = 1 khz, r l = 32 , av = 1 figure 15. thd+n vs. output power, se, f = 20 khz, r l = 32 , av = 1 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=1khz, rl=32 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=20khz, rl=32 av=-1, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 16. thd+n vs. output power, phg, f = 1 khz, r l = 16 , av = 4 figure 17. thd+n vs. output power, phg, f = 20 khz, r l = 16 , av = 4 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=1khz, rl=16 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=20khz, rl=16 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 18. thd+n vs. output power, phg, f = 1 khz, r l = 32 , av = 4 figure 19. thd+n vs. output power, phg, f = 20 khz, r l = 32 , av = 4 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=1khz, rl=32 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v phantom ground f=20khz, rl=32 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 ts4909 electrical characteristics doc id 11972 rev 9 13/35 figure 20. thd+n vs. output power, se, f = 1 khz, r l = 16 , av = 4 figure 21. thd+n vs. output power, se, f = 20 khz, r l = 16 , av = 4 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=1khz, rl=16 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=20khz, rl=16 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 22. thd+n vs. output power, se, f = 1 khz, r l = 32 , av = 4 figure 23. thd+n vs. output power, se, f = 20 khz, r l = 32 , av = 4 1e-3 0.01 0.1 1e-3 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=1khz, rl=32 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 1e-3 0.01 0.1 0.01 0.1 1 10 vcc=3v vcc=2.6v single ended f=20khz, rl=32 av=-4, tamb=25c bw=20hz-120khz thd+n (%) output power (mw) vcc=5v 0.2 figure 24. thd+n vs. frequency, phg, r l = 16 , av = 1 figure 25. thd+n vs. frequency, phg, r l = 32 , av = 1 100 1k 10k 0.01 0.1 1 vcc=5v po=90mw vcc=3v po=40mw 20k 20 vcc=2.6v po=30mw phantom ground rl=16 , av=-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 100 1k 10k 0.01 0.1 1 vcc=5v po=60mw vcc=3v po=25mw 20k 20 vcc=2.6v po=20mw phantom ground rl=32 , av=-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 electrical characteristics ts4909 14/35 doc id 11972 rev 9 figure 26. thd+n vs. frequency, se, r l = 16 , av = 1 figure 27. thd+n vs. frequency, se, r l = 32 , av = 1 100 1k 10k 0.01 0.1 1 vcc=5v po=90mw vcc=3v po=40mw 20k 20 vcc=2.6v po=30mw single ended rl=16 , av=-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 100 1k 10k 0.01 0.1 1 vcc=5v po=60mw vcc=3v po=25mw 20k 20 vcc=2.6v po=20mw single ended rl=32 , av=-1 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 figure 28. thd+n vs. frequency, phg, r l = 16 , av = 4 figure 29. thd+n vs. frequency, phg, r l = 32 , av = 4 100 1k 10k 0.01 0.1 1 vcc=5v po=90mw vcc=3v po=40mw 20k 20 vcc=2.6v po=30mw phantom ground rl=16 , av=-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.005 100 1k 10k 0.01 0.1 1 vcc=5v po=60mw vcc=3v po=25mw 20k 20 vcc=2.6v po=20mw phantom ground rl=32 , av=-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 figure 30. thd+n vs. frequency, se, r l = 16 , av = 4 figure 31. thd+n vs. frequency, se, r l = 32 , av = 4 100 1k 10k 0.01 0.1 1 vcc=5v po=90mw vcc=3v po=40mw 20k 20 vcc=2.6v po=30mw single ended rl=16 , av=-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.005 100 1k 10k 0.01 0.1 1 vcc=5v po=60mw vcc=3v po=25mw 20k 20 vcc=2.6v po=20mw single ended rl=32 , av=-4 bw=20hz-120khz t amb =25c thd+n (%) frequency (hz) 0.002 ts4909 electrical characteristics doc id 11972 rev 9 15/35 figure 32. output power vs. power supply voltage, phg, r l = 16 , f = 1 khz figure 33. output power vs. power supply voltage, phg, r l = 32 , f = 1 khz 23456 0 40 80 120 160 200 240 thd+n=1% phantom ground rl=16 , f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% 23456 0 20 40 60 80 100 120 140 thd+n=1% phantom ground rl=32 , f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% figure 34. output power vs. power supply voltage, se, r l = 16 , f = 1 khz figure 35. output power vs. power supply voltage, se, r l = 32 , f = 1 khz 23456 0 40 80 120 160 200 240 thd+n=1% single ended rl=16 , f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% 23456 0 20 40 60 80 100 120 140 thd+n=1% single ended rl=32 , f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) power supply voltage (v) thd+n=10% figure 36. output power vs. load resistance, phg, vcc = 2.6 v figure 37. output power vs. load resistance, se, vcc = 2.6 v 16 32 48 64 80 96 0 10 20 30 40 50 thd+n=10% phantom ground vcc=2.6v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% 16 32 48 64 80 96 0 10 20 30 40 50 thd+n=10% single ended vcc=2.6v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% electrical characteristics ts4909 16/35 doc id 11972 rev 9 figure 38. output power vs. load resistance, phg, vcc = 3 v figure 39. output power vs. load resistance, se, vcc = 3 v 16 32 48 64 80 96 0 20 40 60 80 thd+n=10% phantom ground vcc=3v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% 16 32 48 64 80 96 0 20 40 60 80 thd+n=10% single ended vcc=3v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% figure 40. output power vs. load resistance, phg, vcc = 5 v figure 41. output power vs. load resistance, se, vcc = 5 v 16 32 48 64 80 96 0 50 100 150 200 thd+n=10% phantom ground vcc=5v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% 16 32 48 64 80 96 0 50 100 150 200 thd+n=10% single ended vcc=5v, f=1khz av=-1, t amb =25c bw=20hz-120khz output power (mw) load resistance ( ) thd+n=1% figure 42. power dissipation vs. output power, phg, vcc = 2.6 v figure 43. power dissipation vs. output power, se, vcc = 2.6 v 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 rl=32 rl=16 phantom ground vcc=2.6v, f=1khz thd+n<1% power dissipation (mw) output power (mw) 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 rl=32 rl=16 single ended vcc=2.6v, f=1khz thd+n<1% power dissipation (mw) output power (mw) ts4909 electrical characteristics doc id 11972 rev 9 17/35 figure 44. power dissipation vs. output power, phg, vcc = 3 v figure 45. power dissipation vs. output power, se, vcc = 3 v 0 102030405060 0 20 40 60 80 100 120 rl=32 rl=16 phantom ground vcc=3v, f=1khz thd+n<1% power dissipation (mw) output power (mw) 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 rl=32 rl=16 single ended vcc=3v, f=1khz thd+n<1% power dissipation (mw) output power (mw) figure 46. power dissipation vs. output power, phg, vcc = 5 v figure 47. power dissipation vs. output power, se, vcc = 5 v 0 20 40 60 80 100 120 140 160 0 50 100 150 200 250 300 rl=32 rl=16 phantom ground vcc=5v, f=1khz thd+n<1% power dissipation (mw) output power (mw) 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 rl=32 rl=16 single ended vcc=5v, f=1khz, thd+n<1% power dissipation (mw) output power (mw) figure 48. crosstalk vs. frequency, se, vcc = 5 v, r l = 16 , av = 1 figure 49. crosstalk vs. frequency, se, vcc = 5 v, r l = 32 , av = 1 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 single ended vcc=5v, rl=16 av=-1, po=90mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 single ended vcc=5v, rl=32 av=-1, po=60mw t amb =25c crosstalk (db) frequency (hz) electrical characteristics ts4909 18/35 doc id 11972 rev 9 figure 50. crosstalk vs. frequency, se, vcc = 5 v, r l = 16 , av = 4 figure 51. crosstalk vs. frequency, se, vcc = 5 v, r l = 32 , av = 4 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 single ended vcc=5v, rl=16 av=-4, po=90mw t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 out2 to out1 20k 20 out1 to out2 single ended vcc=5v, rl=32 av=-4, po=60mw t amb =25c crosstalk (db) frequency (hz) figure 52. crosstalk vs. frequency, phg, vcc = 5 v, av = 1 figure 53. crosstalk vs. frequency, phg, vcc = 5 v, av = 4 100 1k 10k -120 -100 -80 -60 -40 -20 0 rl=16 , po=90mw 20k 20 rl=32 , po=60mw phantom ground vcc=5v, av=-1, t amb =25c crosstalk (db) frequency (hz) 100 1k 10k -120 -100 -80 -60 -40 -20 0 rl=16 , po=90mw 20k 20 rl=32 , po=60mw phantom ground vcc=5v, av=-4, t amb =25c crosstalk (db) frequency (hz) figure 54. snr vs. power supply voltage, phg, unweighted, av = 1 figure 55. snr vs. power supply voltage, se, unweighted, av = 1 23456 92 94 96 98 100 102 104 rl=32 phantom ground av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 unweighted filter (20hz-20khz) 23456 94 96 98 100 102 104 106 rl=32 single ended av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 unweighted filter (20hz-20khz) ts4909 electrical characteristics doc id 11972 rev 9 19/35 figure 56. snr vs. power supply voltage, phg, a-weighted, av = 1 figure 57. snr vs. power supply voltage, se, a-weighted, av = 1 23456 96 98 100 102 104 106 108 rl=32 phantom ground a-weighted filter av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 23456 96 98 100 102 104 106 108 rl=32 single ended a-weighted filter av=-1, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 . . , , , 9. . , , , 23456 84 86 88 90 92 94 96 98 rl=32 phantom ground av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 unweighted filter (20hz-20khz) 23456 86 88 90 92 94 96 rl=32 single ended av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 unweighted filter (20hz-20khz) figure 60. snr vs. power supply voltage, phg, a-weighted, av = 4 figure 61. snr vs. power supply voltage, se, a-weighted, av = 4 23456 88 90 92 94 96 98 100 rl=32 phantom ground a-weighted filter av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 23456 88 90 92 94 96 98 100 rl=32 single ended a-weighted filter av=-4, t amb =25c cb=1 f thd+n<0.4% signal to noise ratio (db) power supply voltage (v) rl=16 electrical characteristics ts4909 20/35 doc id 11972 rev 9 figure 62. power supply rejection ratio vs. frequency vs. vcc, phg figure 63. power supply rejection ratio vs. frequency vs. vcc, se 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 vcc=5v vcc=3v 20k 20 vcc=2.6v phantom ground, inputs grounded av=-1, rl 16 , cb=1 f, t amb =25c psrr (db) frequency (hz) 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 vcc=5v vcc=3v 20k 20 vcc=2.6v single ended, inputs grounded av=-1, rl 16 , cb=1 f, t amb =25c psrr (db) frequency (hz) figure 64. power supply rejection ratio vs. frequency vs. gain, phg figure 65. power supply rejection ratio vs. frequency vs. gain, se 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 av=-4 av=-1 20k 20 av=-2 phantom ground, inputs grounded vcc=3v, rl 16 , cb=1 f, t amb =25c psrr (db) frequency (hz) 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 av=-4 av=-1 20k 20 av=-2 single ended, inputs grounded vcc=3v, rl 16 , cb=1 f, t amb =25c psrr (db) frequency (hz) figure 66. psrr vs. frequency vs. bypass capacitor, phg figure 67. psrr vs. frequency vs. bypass capacitor, se 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 cb=1 f cb=100nf cb=470nf 20k 20 cb=220nf phantom ground, inputs grounded av=-1, rl 16 , vcc=3v, t amb =25c psrr (db) frequency (hz) 100 1k 10k -80 -70 -60 -50 -40 -30 -20 -10 0 cb=1 f cb=100nf cb=470nf 20k 20 cb=220nf single ended, inputs grounded av=-1, rl 16 , vcc=3v, t amb =25c psrr (db) frequency (hz) ts4909 electrical characteristics doc id 11972 rev 9 21/35 figure 68. current consumption vs. power supply voltage, phg figure 69. current consumption vs. power supply voltage, se 23456 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 t amb =85c t amb =25c phantom ground no loads t amb =-40c current consumption (ma) power supply voltage (v) 23456 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t amb =85c t amb =25c single ended no loads t amb =-40c current consumption (ma) power supply voltage (v) figure 70. current consumption vs. standby voltage, vcc = 2.6 v, phg figure 71. current consumption vs. standby voltage, vcc = 2.6 v, se 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 t amb =-40c t amb =25c t amb =85c phantom ground v cc =2.6v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 t amb =-40c t amb =25c t amb =85c single ended v cc =2.6v current consumption (ma) standby voltage (v) figure 72. current consumption vs. standby voltage, vcc = 3 v, phg figure 73. current consumption vs. standby voltage, vcc = 3 v, se 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 t amb =-40c t amb =25c t amb =85c phantom ground v cc =3v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 t amb =-40c t amb =25c t amb =85c single ended v cc =3v current consumption (ma) standby voltage (v) electrical characteristics ts4909 22/35 doc id 11972 rev 9 figure 74. current consumption vs. standby voltage, vcc = 5 v, phg figure 75. current consumption vs. standby voltage, vcc = 5 v, se figure 76. power derating curves 0.0 0.5 1.0 1.5 2.0 4 5 0 2 4 6 8 t amb =-40c t amb =25c t amb =85c phantom ground v cc =5v current consumption (ma) standby voltage (v) 0.0 0.5 1.0 1.5 2.0 4 5 0 2 4 6 8 t amb =-40c t amb =25c t amb =85c single ended v cc =5v current consumption (ma) standby voltage (v) 0 25 50 75 100 125 150 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 no heat sink mounted on a 4-layer pcb dfn10 package power dissipation (w) ambiant temperature ( c) ts4909 application information doc id 11972 rev 9 23/35 4 application information 4.1 general description the ts4909 integrates two monolithic powe r amplifiers. the amp lifier output can be configured to provide either single-ended ( se) capacitively-coupled output or phantom ground (phg) capacitor-less output. figure 1: typical applications for the ts4909 on page 5 shows schematics for each of these configurations. single-ended configuration in the single-ended configuration, an output coupling capacitor, c out , on the output of the power amplifier (v out1 and v out2 ) is mandatory. the output of th e power amplifier is biased to a dc voltage equal to v cc /2 and the output coupling capacito r blocks this reference voltage. phantom ground configuration in the phantom ground configuration, an internal buffer (v out3 ) maintains the v cc /2 voltage and the output of the power amplifiers are also biased to the v cc /2 voltage. therefore, no output coupling capacitors are needed. this is of primary importance in portable applications where space constr aints are continually present. 4.2 frequency response higher cut-off frequency in the high frequency region, you can limit the bandwidth by adding a capacitor c feed in parallel with r feed . it forms a low-pass filter with a -3 db cut-off frequency f ch . assuming that f ch is the highest frequency to be amplified (with a 3 db attenuation), the maximum value of c feed is: figure 77. higher cut-off frequency vs. feedback capacitor f ch 1 2 r feed c feed ?? -------------------------------------------- - = 0.01 0.1 1 10 100 100 1k 10k 100k rfeed=40k rfeed=80k rfeed=20k higher cut-off frequency (khz) cfeed ( f) rfeed=10k application information ts4909 24/35 doc id 11972 rev 9 lower cut-off frequency the lower cut-off frequency f cl of the ts4909 depends on input capacitors c in1,2 . in the single-ended configuration, f cl depends on output capacitors c out1,2 as well. the input capacitor c in in series with the input resistor r in of the amplifier is equivalent to a first-order high-pass filter. assuming that f cl is the lowest frequenc y to be amplified (with a 3 db attenuation), the minimum value of c in is: in the single-ended config uration, the capacitor c out in series with the load resistor r l is equivalent to a first-order high -pass filter. assuming that f cl is the lowest frequency to be amplified (with a 3 db attenuation), the minimum value of c out is: note: if f cl is kept the same for calculation purposes, it must be taken into account that the 1st- order high-pass filter on the input and the 1s t-order high-pass filter on the output create a 2nd-order high-pass filter in the audio sign al path with an attenuation of 6 db on f cl and a roll-off of 40 db ? decade. 4.3 gain using the typica l application schematics in the flat region (no c in effect), the output voltage of a channel is: the gain a v is: note: the configuration (either single-ended or p hantom ground) has no effect on the value of the gain. c in 1 2 f cl r in ?? ---------------------------------- = c out 1 2 f cl r l ?? -------------------------------- - = figure 78. lower cut-off frequency vs. input capacitor figure 79. lower cut-off frequency vs. output capacitor 1 10 100 1000 10 100 1k 10k rin=50k rin=100k rin=20k lower cut-off frequency (hz) cin (nf) rin=10k 0.1 1 10 100 1000 10 100 1k 10k r l =32 r l =300 r l =600 r l =16 lower cut-off frequency (hz) cout ( f) v out v in r feed r in -------------- ? ?? ?? ? v in a v ? == a v r feed r in -------------- ? = ts4909 application information doc id 11972 rev 9 25/35 4.4 power dissipation and efficiency hypotheses voltage and current (v out and i out ) in the load are sinusoidal. the supply voltage (v cc ) is a pure dc source. regarding the load we have: and and 4.4.1 single-ende d configuration the average current delivered by the power supply voltage is: figure 80. current delivered by power su pply voltage in single-ended configuration the power delivered by the power supply voltage is: therefore, the power dissipation by each power amplifier is: and the maximum value is obtained when: v out v peak tv () sin = i out v out r l -------------- a () = p out v peak 2 2r l ----------------- a () = icc avg 1 2 ------ v peak r l ----------------- t () sin t d 0 ? v peak r l ----------------- a () == icc (t) time t/2 t icc avg vpeak/r l 03t/22t p supply v cc i cc avg w () = p diss p supply p out w () ? = p diss 2v cc r l ------------------ - p out p out w () ? = p out ? ? p diss 0 = application information ts4909 26/35 doc id 11972 rev 9 and its value is: note: this maximum value depends only on the power supply voltage and load values. the efficiency is the ratio between the output power and the power supply. the maximum theoretical value is reached when v peak = v cc /2, so: 4.4.2 phantom gro und configuration the average current delivered by the power supply voltage is: figure 81. current delivered by power supply voltage in phantom ground configuration the power delivered by the power supply voltage is: therefore, the power dissipation by each amplifier is: and the maximum value is obtained when: and its value is: note: this maximum value depends only on the power supply voltage and load values. p diss max v cc 2 2 r l ------------- w () = p out p supply ------------------- v peak 2v cc -------------------- - == 4 -- - 78.5% == icc avg 1 -- - v peak r l ----------------- t () sin t d 0 ? 2v peak r l -------------------- - a () == icc (t) time t/2 t vpeak/r l icc avg 03t/22t p supply v cc i cc avg w () = p diss 22v cc r l ---------------------- p out p out w () ? = p out ? ? p diss 0 = p diss max 2v cc 2 2 r l -------------- - w () = ts4909 application information doc id 11972 rev 9 27/35 the efficiency is the ratio between the output power and the power supply. the maximum theoretical value is reached when v peak = v cc /2, so: 4.4.3 total power dissipation the ts4909 is a stereo (dual channel) amplifie r. it has two independent power amplifiers. each amplifier produces heat due to its power dissipation. therefore the maximum die temperature is the sum of each amplifier?s maxi mum power dissipation. it is calculated as follows: p diss 1 = power dissipation due to the first channel power amplifier (v out1 ). p diss 2 = power dissipation due to the second channel power amplifier (v out2 ). to t a l p diss =p diss 1 +p diss 2 (w) in most cases, p diss 1 = p diss 2 , giving: single-ended configuration: phantom ground configuration: 4.5 decoupling of the circuit two capacitors are needed to properly bypass the ts4909 ? a power supply capacitor c s and a bias voltage bypass capacitor c b . c s has a strong influence on the thd+n at high frequencies (above 7 khz) and indirectly on the power supply disturbances. with 1 f, you could expect the thd+n performance to be similar to the values shown in this datasheet. if c s is lower than 1 f, thd+n increases at high frequencies and disturbances on the power su pply rail are less filtered. on the contrary, if c s is higher than 1 f, those disturbances on the power supply rail are more filtered. c b has an influence on thd+n at lower frequencies, but its value is critical on the final result of psrr with inputs grounded at lower frequencies. if c b is lower than 1 f, thd+n increases at lower fr equencies and the psrr worsens (increases). if c b is higher than 1 f, the benefit on thd+n and psrr in the lower frequency range is small. p out p supply ------------------- v peak 4v cc -------------------- - == 8 -- - 39.25% == totalp diss 2p diss1 2p diss2 == totalp diss 22v cc r l ---------------------- p out 2p out ? = totalp diss 42v cc r l ---------------------- p out 2p out ? = application information ts4909 28/35 doc id 11972 rev 9 4.6 wake-up time when the standby is released to turn the device on, the bypass capacitor c b is charged immediately. as c b is directly linked to the bias of the amplifier, the bias will not work properly until the c b voltage is correct. the time to reach this voltage plus a time delay of 40 ms (pop precaution) is called the wake-up time or t wu . it is specified in the electrical characteristics tables with c b =1 f (see section 3: electrical characteristics on page 7 ). if c b has a value other than 1 f, you can calculate t wu by using the following formulas, or read it directly from the graph in figure 82 . single-ended configuration: phantom ground configuration: figure 82. typical wake-up time vs. bypass capacitance note: it is assumed that the c b voltage is equal to 0 v. if the c b voltage is not equal to 0 v, the wake-up time is lower. 4.7 pop performance pop performance in the phantom ground configurat ion is closely linked with the size of the input capacitor c in . the size of c in is dependent on the lower cut-off frequency and psrr values requested. in order to reach low pop, c in must be charged to v cc /2 in less than 40 ms. to follow this rule, the equivalent input constant time (r in c in ) should be less then 8 ms. in = r in xc in <0.008s by following the previous rules, the ts4909 can reach low pop even with a high gain such as 20 db. t wu cb 2.5 ? 0.042 -------------------- 40 [ms; f ] + = t wu cb 2.5 ? 0.417 -------------------- 40 [ms; f ] + = 012345 0 50 100 150 200 250 300 350 t amb =25c phantom ground wake-up time (ms) cb ( f) single ended ts4909 application information doc id 11972 rev 9 29/35 sample calculation with r in =20k and f cl = 20 hz and a -3 db low cut-off frequency, c in =398nf. therefore, c in = 390 nf with standard values which gives a lower cut-off frequency equal to 20.4 hz. in this case: in = r in xc in =7.8ms this value is sufficient with regard to the pr evious formula, so we can state that the pop will be imperceptible. connecting the headphones in general, the headphones are connected usin g a jack connector. to prevent pop in the headphones while plugging in the jack, a pulldown resistor should be connected in parallel with each headphone output. this allows the capacitors c out to be charged even when no headphones are plugged in. a resistor of 1 k is high enough to be a negligible load, and low enough to charge the capacitors c out in less than one second. 4.8 standby mode when the ts4909 is in standby mode, t he time required to put the output stages (v out1 , v out2 and v out3 ) into a high impedance state with reference to ground, and the internal circuitry in standby mode, is a few microseconds. figure 83. internal equivalent circuit schematics of the ts4909 in standby mode 25k 25k 1m 1m vin1 bypass vin2 vout1 vout2 gnd vout3 package information ts4909 30/35 doc id 11972 rev 9 5 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark. figure 84. ts4909 footprint recommendation ts4909 package information doc id 11972 rev 9 31/35 figure 85. dfn10 3 x 3 pitch 0.5 mm exposed pad package mechanical drawing package information ts4909 32/35 doc id 11972 rev 9 note: the dfn10 package has an exposed pad e2 x d2. for enhanced thermal performance, the exposed pad must be soldered to a copper area on the pcb, acting as a heatsink. this copper area can be electrically connec ted to pin 6 (gnd) or left floating. table 7. dfn10 3 x 3 pitch 0.5 mm exposed pad package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 0.80 0.90 1.00 0.031 0.035 0.040 a1 0.02 0.05 0.0008 0.002 a2 0.55 0.65 0.80 0.022 0.026 0.031 a3 0.20 0.008 b 0.18 0.25 0.30 0.007 0.010 0.012 d 2.85 3.00 3.15 0.112 0.118 0.124 d2 2.20 2.70 0.087 0.106 e 2.85 3.00 3.15 0.112 0.118 0.124 e2 1.40 1.75 0.055 0.069 e 0.50 0.020 l 0.30 0.40 0.50 0.012 0.016 0.020 ddd 0.08 0.003 ts4909 ordering information doc id 11972 rev 9 33/35 6 ordering information table 8. order codes part number temperature range package packing marking TS4909IQT -40c to +85c dfn10 tape & reel k909 revision history ts4909 34/35 doc id 11972 rev 9 7 revision history table 9. document revision history date revision changes 01-dec-2006 6 release to production of the device. 02-jan-2007 7 correction of revision number of december revision (revision 6 instead of revision 5). 26-sep-2007 8 updated table 2: absolute maximum ratings . 14-jan-2013 9 added list of figures. updated package information in chapter 5 (drawing and data). added note under table 7 on page 32 regarding exposed pad connectivity. ts4909 doc id 11972 rev 9 35/35 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by two authorized st representatives, st products are not recommended, authorized or warranted for use in military , air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com |
Price & Availability of TS4909IQT
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |