![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRF5210 power mosfet the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. parameter max. units i d @ t c = 25c continuous drain current, v gs @ -10v -40 i d @ t c = 100c continuous drain current, v gs @ -10v -29 a i dm pulsed drain current ? -140 p d @t c = 25c power dissipation 200 w linear derating factor 1.3 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 780 mj i ar avalanche current ? -21 a e ar repetitive avalanche energy ? 20 mj dv/dt peak diode recovery dv/dt ? -5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 screw 10 lbf?in (1.1n?m) absolute maximum ratings parameter typ. max. units r q jc junction-to-case CCC 0.75 r q cs case-to-sink, flat, greased surface 0.50 CCC c/w r q ja junction-to-ambient CCC 62 thermal resistance v dss = -100v r ds(on) = 0.06 w i d = -40a t o -22 0 ab l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l p-channel l fully avalanche rated description s d g 2014-8-10 1 www.kersemi.com
IRF5210 parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.6 v t j = 25c, i s = -21a, v gs = 0v ? t rr reverse recovery time CCC 170 260 ns t j = 25c, i f = -21a q rr reverse recoverycharge CCC 1.2 1.8 c di/dt = -100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics parameter min. typ. max. u nits conditions v (br)dss drain-to-source breakdown voltage -100 CCC CCC v v gs = 0v, i d = -250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC -0.11 CCC v/c reference to 25c, i d = -1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.06 w v gs = -10v, i d = -24a ? v gs(th) gate threshold voltage -2.0 CCC -4.0 v v ds = v gs , i d = -250a g fs forward transconductance 10 CCC CCC s v ds = -50v, i d = -21a CCC CCC -25 a v ds = -100v, v gs = 0v CCC CCC -250 v ds = -80v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 180 i d = -21a q gs gate-to-source charge CCC CCC 25 nc v ds = -80v q gd gate-to-drain ("miller") charge CCC CCC 97 v gs = -10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 17 CCC v dd = -50v t r rise time CCC 86 CCC i d = -21a t d(off) turn-off delay time CCC 79 CCC r g = 2.5 w t f fall time CCC 81 CCC r d = 2.4 w, see fig. 10 ? between lead, CCC CCC 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 2700 CCC v gs = 0v c oss output capacitance CCC 790 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 450 CCC ? = 1.0mhz, see fig. 5 nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC i gss ns 4.5 7.5 i dss drain-to-source leakage current ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? i sd -21a, di/dt -480a/s, v dd v (br)dss , t j 175c notes: ? v dd = -25v, starting t j = 25c, l = 3.5mh r g = 25 w , i as = -21a. (see figure 12) ? pulse width 300s; duty cycle 2%. -40 -140 a s d g s d g 2014-8-10 2 www.kersemi.com fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 d ds a -i , d rain-to-source c urrent (a) -v , drain-to-source voltage (v) vgs to p - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bot tom - 4.5v -4.5v 40s pulse w idth t = 25c c 1 10 100 1000 0.1 1 10 100 d ds a -i , drain-to-source current (a) -v , drain-to-source volta g e ( v ) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 40 s pulse w idth t = 175c c 1 10 100 1000 45678910 t = 25c j gs d a -i , drain-to-source current (a) -v , g ate-to-source volta g e (v) t = 175c v = -5 0 v 40s pulse w idth ds j 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source o n resistance ds(on) (normalized) a v = -10v gs i = -35a d IRF5210 2014-8-10 3 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 1000 2000 3000 4000 5000 6000 1 10 100 c, capacitance (pf) a ds -v , drain-to-source volta g e ( v ) v = 0v , f = 1mhz c = c + c , c shorte d c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss 0 4 8 12 16 20 0 40 80 120 160 200 g gs a -v , gate-to-source voltage (v) q , total g ate char g e ( nc ) v = -80v v = -50v v = -20v ds ds ds for test circuit see figure 13 i = -21a d 1 10 100 1000 0.4 0.8 1.2 1.6 2.0 2.4 t = 25c j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain voltage (v) t = 175c j 1 10 100 1000 1 10 100 1000 ope ration in this area limite d by r ds(on) 10ms a -i , drain current (a) -v , drain-to-source volta g e ( v ) ds d 10s 100s 1ms t = 25c t = 175c sin g le pulse c j IRF5210 2014-8-10 4 www.kersemi.com fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds -10v pulse width 1 s duty factor 0.1 % r d v gs v dd r g d.u.t. + - v ds 90% 10% v gs t d(on) t r t d(off) t f 25 50 75 100 125 150 175 0 10 20 30 40 50 t , case temperature ( c) -i , drain current (a) c d 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) IRF5210 2014-8-10 5 www.kersemi.com fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v ds i d i g -3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v ( br ) dss i as r g i as 0.01 w t p d.u.t l v ds v dd driver a 15v -20v 0 400 800 1200 1600 2000 25 50 75 100 125 150 175 j e , single pulse avalanche energy (mj) as a startin g t , junction temperature ( c ) i top -8.6a -15a bo tto m -21a d IRF5210 2014-8-10 6 www.kersemi.com peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t * circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 14. for p-channel hexfets v gs IRF5210 2014-8-10 7 www.kersemi.com lead assignments 1 - gate 2 - drain 3 - sou rc e 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) m in 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 d im e n s io n in g & to l e r a n c ing p e r a n s i y 1 4.5m , 1 9 82. 3 o u t lin e c o n f o r m s to je d e c o u t lin e to -2 20 a b . 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. part number inte rn at io n al r ec tifie r lo g o example : this is an irf1010 w ith a ss e m bly lo t co de 9b 1m assembly l ot co d e date code (yyw w ) yy = year ww = week 9246 irf1010 9b 1m a part marking information to-220ab package outline to-220ab outline dimensions are shown in millimeters (inches) part number international rectifier lo g o example : this is an irf1010 w it h as se m b ly lo t c o de 9b1m assembly lo t co de date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a IRF5210 2014-8-10 8 www.kersemi.com |
Price & Availability of IRF5210
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |