Part Number Hot Search : 
AD1885 MPSA1 C4300 420IPB 2SA770 56BLT TLMH3100 ADP171
Product Description
Full Text Search
 

To Download A2T23H160-24S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  a2t23h160--24sr3 1 rf device data freescale semiconductor, inc. rf power ldmos transistor n--channel enhancement--mode lateral mosfet this 28 w asymmetrical doherty rf power ldmos transistor is designed for cellular base station applications covering the frequency range of 2300 to 2400 mhz. 2300 mhz ? typical doherty single--carrier w--cdma performance: v dd =28vdc, i dqa = 350 ma, v gsb =0.7vdc,p out = 28 w avg., input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) ? d (%) output par (db) acpr (dbc) 2300 mhz 17.7 48.8 7.9 ?33.5 2350 mhz 17.7 48.4 8.0 ?37.2 2400 mhz 17.8 48.2 7.9 ?37.0 features ? advanced high performance in--package doherty ? greater negative gate--source voltage range for improved class c operation ? designed for digital predistortion error correction systems document number: a2t23h160--24s rev. 0, 11/2015 freescale semiconductor technical data 2300?2400 mhz, 28 w avg., 28 v airfast rf power ldmos transistor a2t23h160--24sr3 figure 1. pin connections (top view) rf outa /v dsa rf outb /v dsb rf ina /v gsa rf inb /v gsb vbw a (1) vbw b (1) 6 3 15 24 carrier peaking ni--780s--4l2l 1. device cannot operate with v dd current supplied through pin 3 and pin 6. ? freescale semiconductor, inc., 2015. all rights reserved.
2 rf device data freescale semiconductor, inc. a2t23h160--24sr3 table 1. maximum ratings rating symbol value unit drain--source voltage v dss ?0.5, +65 vdc gate--source voltage v gs ?6.0, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg ?65 to +150 ? c case operating temperature range t c ?40 to +150 ? c operating junction temperature range (1,2) t j ?40 to +225 ? c table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 73 ? c, 28 w avg., w--cdma, 28 vdc, i dqa = 350 ma, v gsb = 0.7 vdc, 2350 mhz r ? jc 0.49 ? c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 2 machine model (per eia/jesd22--a115) b charge device model (per jesd22--c101) iv table 4. electrical characteristics (t a =25 ? c unless otherwise noted) characteristic symbol min typ max unit off characteristics (4) zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =32vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =5vdc,v ds =0vdc) i gss ? ? 1 ? adc on characteristics -- side a, carrier gate threshold voltage (v ds =10vdc,i d =60 ? adc) v gs(th) 0.8 1.2 1.6 vdc gate quiescent voltage (v dd =28vdc,i d = 350 madc, measured in functional test) v gsa(q) 1.4 1.8 2.2 vdc drain--source on--voltage (v gs =10vdc,i d =0.6adc) v ds(on) 0.1 0.15 0.3 vdc on characteristics -- side b, peaking gate threshold voltage (v ds =10vdc,i d = 100 ? adc) v gs(th) 0.8 1.2 1.6 vdc drain--source on--voltage (v gs =10vdc,i d =1.0adc) v ds(on) 0.1 0.15 0.3 vdc 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http:// www.freescale.com/rf/calculators. 3. refer to an1955 , thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf and search for an1955. 4. each side of device measured separately. (continued)
a2t23h160--24sr3 3 rf device data freescale semiconductor, inc. table 4. electrical characteristics (t a =25 ? c unless otherwise noted) (continued) characteristic symbol min typ max unit functional tests (1,2) (in freescale doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 350 ma, v gsb =0.7vdc,p out =28wavg., f = 2300 mhz, single--carrier w--cdma, iq magnitude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ ? 5mhzoffset. power gain g ps 17.1 17.7 20.1 db drain efficiency ? d 46.5 48.8 ? % output peak--to--average ratio @ 0.01% probability on ccdf par 7.4 7.9 ? db adjacent channel power ratio acpr ? ?33.5 ?30.0 dbc load mismatch (2) (in freescale doherty test fixture, 50 ohm system) i dqa = 350 ma, v gsb = 0.7 vdc, f = 2350 mhz vswr 10:1 at 32 vdc, 151 w cw output power (3 db input overdrive from 120 w cw rated power) no device degradation typical performance (2) (in freescale doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 350 ma, v gsb =0.7vdc, 2300?2400 mhz bandwidth p out @ 1 db compression point, cw p1db ? 120 ? w p out @ 3 db compression point (3) p3db ? 178 ? w am/pm (maximum value measured at the p3db compression point across the 2300?2400 mhz frequency range) ? ? ?18 ? ? vbw resonance point (imd third order intermodulation inflection point) vbw res ? 150 ? mhz gain flatness in 100 mhz bandwidth @ p out =28wavg. g f ? 0.5 ? db gain variation over temperature (?30 ? cto+85 ? c) ? g ? 0.009 ? db/ ? c output power variation over temperature (?30 ? cto+85 ? c) ? p1db ? 0.006 ? db/ ? c table 5. ordering information device tape and reel information package a2t23h160--24sr3 r3 suffix = 250 units, 44 mm tape width, 13--inch reel ni--780s--4l2l 1. part internally matched both on input and output. 2. measurements made with device in an a symmetrical doherty configuration. 3. p3db = p avg + 7.0 db where p avg is the average output power measured using an uncli pped w--cdma single--carrier input signal where output par is compressed to 7.0 db @ 0.01% probability on ccdf.
4 rf device data freescale semiconductor, inc. a2t23h160--24sr3 figure 2. a2t23h160--24sr3 test circuit component layout cut out area v gga v dda v ggb v ddb c p r4 c14 c22 r2 c5 c1 c6 c2 c11 c10 r1 z1 c15 r3 c23 r5 a2t23h160--24s rev. 1 d63616 c21 c19 c17 c9 c7 c12 c3 c8 c4 c13 c18 c16 c24 c20 table 6. a2t23h160--24sr3 test circuit component designations and values part description part number manufacturer c1, c2, c3, c9, c22, c23, c24 9.1 pf chip capacitors atc600f9r1jt250xt atc c4 6.8 pf chip capacitor atc600f6r8jt250xt atc c5, c6 0.4 pf chip capacitors atc600f0r4bt250xt atc c7, c8 0.2 pf chip capacitors atc600f0r2bt250xt atc c10 0.3 pf chip capacitor atc600f0r3bt250xt atc c11 1.0 pf chip capacitor atc600f1r0bt250xt atc c12 0.9 pf chip capacitor atc600f0r9bt250xt atc c13 0.6 pf chip capacitor atc600f0r6bt250xt atc c14, c15, c16, c17, c18, c19 10 ? f chip capacitors c5750x7s2a106m230kb tdk c20, c21 470 ? f, 50 v electrolytic capacitors 477cks050m illinois r1 50 ? , 20 w chip resistor c20n50z4 anaren r2, r3 2.2 ? , 1/4 w chip resistors crcw12062r20jnea vishay r4, r5 10 k ? , 1/4 w chip resistors crcw120610k0jnea vishay z1 2300?2700 mhz band, 90 ? , 2 db directional coupler x3c25p1-02s anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 d63616 mtl
a2t23h160--24sr3 5 rf device data freescale semiconductor, inc. typical characteristics parc (db) ?2.4 ?1.6 ?1.8 ?2 ?2.2 ?2.6 2290 f, frequency (mhz) figure 3. single--carrier output peak--to--average ratio compression (parc) broadband performance @ p out = 28 watts avg. 17.55 18.05 18 17.95 ?38 49 48.8 48.6 48.4 ?33 ?34 ?35 ?36 ? d , drain efficiency (%) g ps , power gain (db) 17.9 17.85 17.8 17.75 17.7 17.65 17.6 2305 2320 2335 2350 2365 2380 2395 2410 48.2 ?37 acpr (dbc) figure 4. intermodulation distortion products versus two--tone spacing two--tone spacing (mhz) 10 ? 60 ?10 ?20 ? 30 ?4 0 1 300 imd, intermodulatio n distortion (dbc) figure 5. output peak--to--average ratio compression (parc) versus output power p out , output power (watts) ?1 ?3 20 0 ?2 ?4 output compression at 0.01% probability on ccdf (db) 10 30 40 70 30 90 80 70 60 50 40 ? d ? drain efficiency (%) 50 ? d acpr parc acpr (dbc) ?55 ?25 ?30 ?35 ?45 ?40 ?50 19.5 g ps , power gain (db) 19 18.5 18 17.5 17 16.5 g ps ?5 1 ? d parc g ps v dd =28vdc,p out = 56 w (pep), i dqa = 350 ma v gsb = 0.7 vdc, two--tone measurements (f1 + f2)/2 = center frequency of 2350 mhz im3--l im5--u im7--l im7--u 100 ?1 db = 20.9 w input signal par = 9.9 db @ 0.01% pr obabilit y on ccdf ?2 db = 29.6 w ?3 db = 39.7 w im5--l im3--u ?50 acpr v dd =28vdc,p out =28w(avg.),i dqa = 350 ma v gsb = 0.7 vdc, single--carrier w--cdma, 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0.01% probabilit y on ccdf v dd =28vdc,i dqa = 350 ma, v gsb = 0.7 vdc, f = 2350 mhz single--carrier w--cdma, 3.84 mhz channel bandwidth 60
6 rf device data freescale semiconductor, inc. a2t23h160--24sr3 typical characteristics figure 6. single--carrier w--cdma power gain, drain efficiency and acpr versus output power figure 7. broadband frequency response 10 22 f, frequency (mhz) v dd =28vdc p in =0dbm i dqa = 350 ma v gsb =0.7vdc 18 16 14 gain (db) 20 12 1900 2000 2100 2200 2300 2400 2500 2600 2700 gain 1 p out , output power (watts) avg. ?10 ?20 10 22 0 60 50 40 30 20 ? d , drain efficiency (%) g ps , power gain (db) 20 18 10 100 10 ?60 acpr (dbc) 16 14 12 0 ?30 ?40 ?50 acpr ? d 2300 mhz g ps 2400 mhz 2350 mhz 2300 mhz 2350 mhz 2400 mhz 2300 mhz 2350 mhz 2400 mhz v dd =28vdc,i dqa = 350 ma, v gsb =0.7vdc single--carrier w--cdma, 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0.01% probab ility on ccdf
a2t23h160--24sr3 7 rf device data freescale semiconductor, inc. table 7. carrier side load pull performance ? maximum power tuning v dd =28vdc,i dqa = 348 ma , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 8.42 ? j15.0 10.6 + j13.0 11.3?j16.2 18.4 48.2 66 55.7 ?13 2350 10.8 ? j13.6 11.8 + j11.0 10.6 ? j15.1 18.6 48.2 66 55.4 ?14 2400 11.0 ? j11.3 11.5 + j8.59 9.72 ? j14.0 18.8 48.2 66 56.2 ?14 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 8.42 ? j15.0 12.1 + j13.1 11.3?j17.2 16.3 49.0 80 57.0 ?17 2350 10.8 ? j13.6 13.1 + j10.2 10.8 ? j16.9 16.3 49.0 79 56.0 ?18 2400 11.0 ? j11.3 12.3 + j7.27 10.3 ? j15.7 16.6 49.0 79 57.2 ?18 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 8. carrier side load pull performance ? maximum drain efficiency tuning v dd =28vdc,i dqa = 348 ma , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 8.42 ? j15.0 10.6 + j13.6 15.7 ? j1.67 21.8 46.0 40 66.3 ?23 2350 10.8 ? j13.6 11.6 + j11.4 14.0 ? j3.17 21.7 46.2 42 65.8 ?22 2400 11.0 ? j11.3 11.4 + j8.97 11.5 ? j4.73 21.6 46.5 44 65.8 ?22 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 8.42 ? j15.0 11.9 + j13.5 15.6 ? j4.42 19.3 47.2 52 67.0 ?29 2350 10.8 ? j13.6 12.9 + j10.6 13.5 ? j4.16 19.5 47.1 51 66.4 ?31 2400 11.0 ? j11.3 12.1 + j7.68 11.3 ? j5.87 19.3 47.4 55 66.6 ?30 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
8 rf device data freescale semiconductor, inc. a2t23h160--24sr3 table 9. peaking side load pull performance ? maximum power tuning v dd =28vdc,v gsb =0.7vdc , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 17.3 ? j13.1 17.6 + j14.6 7.80 ? j12.4 13.8 50.3 108 54.2 ?29 2350 18.5 ? j7.85 18.1 + j8.23 7.39 ? j12.6 14.0 50.5 111 55.4 ?31 2400 13.5 ? j2.90 14.2 + j4.26 7.22 ? j12.8 14.1 50.5 112 56.0 ?31 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 17.3 ? j13.1 19.5 + j12.5 8.19 ? j13.6 11.6 51.2 132 56.5 ?35 2350 18.5 ? j7.85 17.9 + j5.56 7.94 ? j13.6 11.8 51.2 132 57.1 ?38 2400 13.5 ? j2.90 12.7 + j2.79 7.79 ? j14.0 11.9 51.2 132 56.6 ?38 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. table 10. peaking side load pull performance ? maximum drain efficiency tuning v dd =28vdc,v gsb =0.7vdc , pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 17.3 ? j13.1 17.3 + j16.6 15.9 ? j5.99 14.8 49.0 79 66.1 ?33 2350 18.5 ? j7.85 19.2 + j10.7 13.2 ? j4.39 15.1 48.7 75 67.8 ?36 2400 13.5 ? j2.90 16.0 + j5.29 10.3 ? j4.95 15.1 48.7 75 68.5 ?38 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 2300 17.3 ? j13.1 19.7 + j13.6 15.1 ? j10.9 12.5 50.3 108 65.9 ?38 2350 18.5 ? j7.85 18.9 + j6.52 14.0 ? j8.10 12.9 50.0 100 67.4 ?42 2400 13.5 ? j2.90 14.0 + j3.01 11.5 ? j6.61 13.0 49.7 94 68.0 ?45 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
a2t23h160--24sr3 9 rf device data freescale semiconductor, inc. p1db ? typical carrier load pull contours ? 2350 mhz ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 8. p1db load pull output power contours (dbm) real ( ? ) ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 figure 9. p1db load pull efficiency contours (%) real ( ? ) figure 10. p1db load pull gain contours (db) real ( ? ) figure 11. p1db load pull am/pm contours ( ? ) real ( ? ) ?10 p e 46 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 47 46.5 48 47.5 44 44.5 45 45.5 46 46.5 47 50 52 54 56 58 60 p e 62 64 56 54 18.5 19 20 20.5 21 21.5 22 22.5 p e 19.5 ?14 ?12 p e ?16 ?18 ?20 ?22 ?24 ?26 ?28
10 rf device data freescale semiconductor, inc. a2t23h160--24sr3 p3db ? typical carrier load pull contours ? 2350 mhz ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 12. p3db load pull output power contours (dbm) real ( ? ) ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 figure 13. p3db load pull efficiency contours (%) real ( ? ) figure 14. p3db load pull gain contours (db) real ( ? ) figure 15. p3db load pull am/pm contours ( ? ) real ( ? ) ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 p e 48 47.5 45 45.5 46 46.5 47 47 47.5 48.5 50 52 54 56 58 60 62 64 p e 66 56 58 16.5 16 17 18.5 18 19 19.5 17.5 p e 20 p e ?18 ?16 ?20 ?22 ?24 ?26 ?28 ?30 ?32
a2t23h160--24sr3 11 rf device data freescale semiconductor, inc. p1db ? typical peaking load pull contours ? 2350 mhz ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 16. p1db load pull output power contours (dbm) real ( ? ) ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 figure 17. p1db load pull efficiency contours (%) real ( ? ) figure 18. p1db load pull gain contours (db) real ( ? ) figure 19. p1db load pull am/pm contours ( ? ) real ( ? ) ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 p e 48 47.5 46.5 47 48.5 49 49.5 50 48.5 p e 52 56 58 60 62 64 54 66 11 p e 11.5 12 12.5 13 13.5 14 14.5 15 p e ?32 ?30 ?34 ?36 ?38 ?40 ?42 ?44
12 rf device data freescale semiconductor, inc. a2t23h160--24sr3 p3db ? typical peaking load pull contours ? 2350 mhz ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 20. p3db load pull output power contours (dbm) real ( ? ) ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 figure 21. p3db load pull efficiency contours (%) real ( ? ) figure 22. p3db load pull gain contours (db) real ( ? ) figure 23. p3db load pull am/pm contours ( ? ) real ( ? ) ?10 ?25 5 ?5 imaginary ( ? ) 15 20 25 5 30 0 ?15 ?20 10 ?10 p e 47 47.5 48 48.5 49 49.5 50 50.5 51 p e 52 54 56 58 60 62 64 66 9.5 10 9 10.5 p e 11 11.5 12 12.5 13 ?34 p e ?36 ?38 ?40 ?42 ?44 ?46 ?48
a2t23h160--24sr3 13 rf device data freescale semiconductor, inc. package dimensions
14 rf device data freescale semiconductor, inc. a2t23h160--24sr3
a2t23h160--24sr3 15 rf device data freescale semiconductor, inc. product documentation, software and tools refer to the following resources to aid your design process. application notes ? an1955: thermal measurement methodology of rf power amplifiers engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? s2p file development tools ? printed circuit boards to download resources specific to a given part number: 1. go to http://www .freescale.com/rf 2. search by part number 3. click part number link 4. choose the desired resource from the drop down menu revision history the following table summarizes revisions to this document. revision date description 0 nov. 2015 ? initial release of data sheet
16 rf device data freescale semiconductor, inc. a2t23h160--24sr3 information in this document is provided solely to enable system and software implementers to use freescale products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. freescale reserves the right to make changes without further notice to any products herein. freescale makes no warranty, representation, or guarantee regarding the suitability of its products fo r any particular purpose, nor does freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all li ability, including without limit ation consequential or incidental damages. ?typical? parameters that may be provided in freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. all operating parameters, including ?typicals,? must be validated for each customer application by customer?s technical experts. freescale does not convey any license under its patent rights nor the rights of others. freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions. freescale and the freescale logo are trademarks of freescale semiconductor, inc., reg. u.s. pat. & tm. off. airfast is a trademark of freescale semiconductor, inc. all other product or service names are the property of their respective owners. e 2015 freescale semiconductor, inc. how to reach us: home page: freescale.com web support: freescale.com/support document number: a2t23h160--24s rev. 0, 11/2015


▲Up To Search▲   

 
Price & Availability of A2T23H160-24S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X