Part Number Hot Search : 
LM239D T05SC SA190 XGH24N60 69200 M9435 DA05CP XXBGR
Product Description
Full Text Search
 

To Download IRFU2905ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr2905zpbfIRFU2905ZPBF hexfet ? power mosfet v dss = 55v r ds(on) = 14.5m ? i d = 42a  www.irf.com 1 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely lowon-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax features d-pak irfr2905zpbf i-pak IRFU2905ZPBF hexfet ? is a registered trademark of international rectifier. absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm p u l se d d ra i n c urrent p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t este d v a l ue  i ar a va l anc h e c urrent  a e ar r epet i t i ve a va l anc h e e ner gy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc j unct i on-to- c ase  CCC 1.38 r ja j unct i on-to- a m bi ent (pcb mount )  CCC 40 c/w r ja j unct i on-to- a m bi ent  CCC 110 82 55 see fig.12a, 12b, 15, 16 110 0.72 20 max. 5942 240 42 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) lead-free pd - 95943b downloaded from: http:///

 2 www.irf.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.053 CCC v/c r ds(on) static drain-to-source on-resistance CCC 11.1 14.5 m ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v gfs forward transconductance 20 CCC CCC s i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 200 na gate-to-source reverse leakage CCC CCC -200 q g total gate charge CCC 29 44 q gs gate-to-source charge CCC 7.7 CCC nc q gd gate-to-drain ("miller") charge CCC 12 CCC r g gate input resistance CCC 1.3 CCC ? f = 1mhz, open drain t d(on) turn-on delay time CCC 14 CCC t r rise time CCC 66 CCC t d(off) turn-off delay time CCC 31 CCC ns t f fall time CCC 35 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package and center of die contact c iss input capacitance CCC 1380 CCC c oss output capacitance CCC 240 CCC c rss reverse transfer capacitance CCC 120 CCC pf c oss output capacitance CCC 820 CCC c oss output capacitance CCC 190 CCC c oss eff. effective output capacitance CCC 300 CCC source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current CCC CCC 36 (body diode) a i sm pulsed source current CCC CCC 240 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 23 35 ns q rr reverse recovery charge CCC 16 24 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 10v  v dd = 28v i d = 36a r g = 15 ? t j = 25c, i s = 36a, v gs = 0v  t j = 25c, i f = 36a, v dd = 28v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 36a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 36a i d = 36a v ds = 44v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 175c 0 1 02 03 04 05 0 i d, drain-to-source current (a) 0 10 20 30 40 50 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 15v 380s pulse width downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 400 800 1200 1600 2000 2400 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 02 03 04 05 0 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v vds= 11v i d = 36a for test circuit see figure 13 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 36a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.3962 0.000120.5693 0.00045 0.4129 0.0015 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 36a 8.6a bottom 4.8a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 10 20 30 40 50 60 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 36a downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90%10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9  

  

  
      
   int ernational ass embled on ww 16, 2001 in the assembly line "a" or note: "p" in assembly line position example: lot code 1234 this is an irfr120 wi t h as s e mb l y i ndicates "l ead-f r ee" product (optional) p = des ignate s lead-f re e a = as s e mb l y s i t e cod e part number we e k 1 6 dat e code year 1 = 2001 rect ifier int ernat ional logo lot code as s e mb l y 34 12 irfr120 116a line a 34 rect ifier logo irfr120 12 assembly lot code ye ar 1 = 2001 dat e code part number we e k 16 "p" in as s embly line pos ition indicates "l ead-f r ee" qual i fi cati on to the cons umer -l evel p = des ignate s lead-f re e product qualified to t he cons u me r l e ve l (opt i onal ) notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com  
   
      
    
  78 line a logo international re ct if ie r or product (opt ional) p = designates lead-free a = assembly site code irf u120 part number week 19 dat e code year 1 = 2001 rectifier international logo as s e mb l y lot code irf u120 56 dat e code part number lot code as s e mb l y 56 78 year 1 = 2001 week 19 119a indicates lead-free" as s e mb l e d on ww 19 , 2 0 01 in the assembly line "a" note: "p" in as s embly line pos ition example: with assembly this is an irfu120 lot code 5678 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.08mh r g = 25 ? , i as = 36a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994      )  !"#   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFU2905ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X